Nonlinear Multi-Objective Constrained Optimization (in English)

Скачать insert_drive_file Ссылка language

Авторы:

Alexis Pospelov, Fedor Gubarev

Издание:

20th Conference of the International Federation of Operational Research Societies, 2014

Абстракт:

Local geometry of the Pareto front allows building efficient algorithms to discover the frontier. However, in many applications it’s not sufficient to use only linear approximations to optimal variety. In this work we propose to use second-order local approximation to the Pareto frontier. Within the descent-diffusion algorithm, presented in supplementary talk, our approach allows efficient discovery of Pareto frontier even in problems with singular Hessians, where linear approximations perform poorly because of large number of very small steps.

Ключевые слова: Pareto frontier, Approximation, Descent-diffusion optimization, Multi-objective optimization

LinkedIn
VK

Контактная информация

location_on  117246, Москва, Научный проезд, д. 17, 15 этаж

phone  +7 (495) 669-68-15

mail_outline  info@datadvance.net

Связаться navigate_next