Выделение главных направлений в задаче аппроксимации на основе гауссовских процессов

Скачать account_balance Скачать insert_drive_file

Авторы:

Бурнаев Е.В., Ерофеев П.Д., Приходько П.В.

Издание:

Труды МФТИ. 2013. Т. 5, № 4.

Абстракт:

Для решения множества прикладных задач необходимо уметь восстанавливать неизвестную зависимость по выборке ее значений. Одним из наиболее эффективных методов восстановления зависимостей является метод построения аппроксимации на основе гауссовских процессов. Зачастую ковариационную функцию гауссовского процесса моделируют с помощью гауссовской ковариационной функции на основе взвешенного евклидова расстояния. Однако, такое априорное предположение о ковариационной структуре источника данных означает, что направления наиболее значимого изменения аппроксимируемой функции и направления координатных осей в пространстве данных совпадают, что редко выполняется на практике. В работе предложен эффективный способ моделирования ковариационной структуры данных для более общего случая. Разработан эффективный алгоритм настройки параметров ковариационной функции. Показано, что разработанный алгоритм также позволяет решать задачу эффективного снижения размерности. Предложен статистический тест, позволяющий оценить сниженную размерность данных. Все основные утверждения подкреплены экспериментальными результатами на тестовых задачах. Общая эффективность разработанного подхода продемонстрирована на примере решения реальной задачи из области самолетостроения.

Ключевые слова: Аппроксимация, Гауссовские процессы, Снижение размерности

LinkedIn
VK

Контактная информация

location_on  117246, Москва, Научный проезд, д. 17, 15 этаж

phone  +7 (495) 669-68-15

mail_outline  info@datadvance.net

Связаться navigate_next