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Chapter 1

Introduction

1.1 What is GTDR (FE mode)

GTDR (FE mode) is a software package which implements solution of Dimension Re-
duction (DR) problem for different types of the problem statement using user-provided
training data. In the current manual only Supervised (Effective) Dimension Reduc-
tion (EDR) or Feature Extraction (FE) problem statement is considered (FE mode for
DR). GTDR (FE mode) tool extracts linear combinations of features that mostly influence
the output variables thereby answering this question directly.

1.2 Documentation structure

Documentation for GTDR (FE mode) includes:

• User manual (this document) which contains:

– A general overview of the tool’s functionality;

– Short descriptions of the problem and representative algorithms;

– Recommendations on the tool’s usage;

– Examples of applications to model problems.

The present document has the following structure:

• Chapter 2 is an informal introduction to the tool’s functionality.

• Chapter 3 gives a more formal mathematical explanation. It contains an overview of
relevant effective dimension reduction concepts and state of the art methods.

• Chapter 4 provides the GTDR (FE mode) algorithm details.

• Chapter 5 describes the internal workflow of the tool.

• Chapter 8 gives some examples of GTDR (FE mode) tool usage for some toy and
real-world problems.
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Chapter 2

Overview

The main goal of Generic Tool for Dimension Reduction (Feature Extraction mode) (GT
DR (FE mode)) is to extract the most important linear combination of features1 for the
user-provided dependency which is represented as a data sample 2.

GTDR (FE mode) tool attempts to answer the following questions:

1. What linear combination of initial features do influence the dependency and thus should
be included in the further study?

2. If some kind of redundancy in inputs is assumed, how the number of features considered
in the problem could be effectively reduced?

Examples of GTDR (FE mode) application that address the questions above are pre-
sented in the Chapter 8.

In this chapter the general problem of dimension reduction3 is informally discussed and
some motivating examples are given. The more formal mathematical definitions and state-
ments are given in Chapter 3 along with short review of the most representative state of the
art methods.

Dimension reduction is the mapping of data to a lower dimensional space such that
uninformative variance in the data is discarded, or such that a subspace in which the data
belongs to is detected. Dimension reduction is generally used for data visualization, and
for extracting key low dimensional features (e.g., the 2-dimensional orientation of an object,
from its high dimensional image representation). In some cases the desired low dimensional
features depend on the task at hand. Apart from teaching us about the data, dimension
reduction can lead us to better models for inference. The need for dimension reduction also
arises for other pressing reasons when building approximation or design of experiment (see
user manuals for GTApprox and for GTDoE resp.).

The problem of dimension reduction can be stated in two fundamentally different ways:

• The first one considers internal structure of data and assumes that data sample
belongs to some manifold in original space of lower dimension. This type of problem
statement is further referred to as Unsupervised Dimension Reduction.

1Hereinafter the term “feature” refers to a coordinate of the digital vector representation of some objects
in the specified space.

2also known as training data (or samples)
3We follow the lead of statistics community to reduce “dimensionality reduction” and “dimensional re-

duction” to “dimension reduction”.
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CHAPTER 2. OVERVIEW

• Another approach explores the functional dependence in the data sample and ex-
tracts some subspace of the original feature space that preserves information about
the dependence. This type of problem statement is further referred to as Supervised
Dimension Reduction or Effective (sufficient) Dimension Reduction or, in some liter-
ature, Feature Extraction. The last term is rather confusing so we avoid it throughout
the manual.

Current version of GT DR is intended to solve Unsupervised Dimension Reduction kind of
problem in assumption of almost linear subspaces, i.e. subspaces that slightly deviate from
hyperplanes.

To illustrate Supervised Dimension Reduction problem consider the following data gen-
eration model (see Figure 2.1):

y = f(x1, x2) + ε = (x1 + 3x2)
2 + ε, (2.1)

where xi ∈ [−1, 1], i = 1, 2 and ε is a random variable with standard normal distribution
N (0, 1). The original dimensionality of regressors is 2. But it is quite easy to see, that
the effective dimensionality is 1 as y really depend on the linear combination of xi, namely
on ξ = x1 + 3x2, i.e. y = g(ξ) + ε = g([x1, x2]B

T ) + ε, where B = [1, 3] is a projection
matrix. Obviously, further data analysis is much easier in 1-dimensional space rather than
in 2-dimensional one. GTDR (FE mode) is addressed to solve this particular kind of
problems. One more example of application is described in Other illustrating artificial and
real-world examples see in Chapter 8.

(a) Dataset y = (x1 + 3x2)2 + ε (b) Dataset and Surface y = (x1 + 3x2)2

Figure 2.1: Example for Effective Dimension Reduction problem

General Effective (Supervised) Dimension Reduction problem is divided into two sub-
problems that differ in purpose:

1. The final goal is to build up a regression on data or similar task, i.e. we need to study
the expectation of outputs with respect to inputs.

2. We need to study the whole conditional distribution of outputs with respect to inputs,
which may be helpful e.g. in further accuracy estimation of approximation models
build upon the data.

This distinction forms two fundamental concepts4:

4The more accurate mathematical definitions are given in Chapter 3.
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CHAPTER 2. OVERVIEW

• Central Mean Subspace (CMS) - the subspace which is a linear span of expectation
of outputs with respect to inputs.

• Central Subspace (CS) - the subspace which is a linear span of the whole conditional
distribution of outputs with respect to inputs.

To illustrate the difference consider a little bit more complicated example of data generation
function:

y = f(x1, x2) + ε̃(x1, x2) = (x1 + 3x2)
2 + x1ε,

where again xi ∈ [−1, 1], i = 1, 2 and ε is a random variable with standard normal distribu-
tion N (0, 1). The CMS is the same as in case 2.1 as E[Y |x1, x2] = (x1 + 3x2)

2 and defined
by the projection matrix B = [1, 3]. But the CS is different as the error term depends on
the values of x1. And if we want to study the whole conditional distribution of y with re-
spect to x1 and x2 we can not reduce the dimensionality of inputs in this particular example!
Important to notice that current version of GTDR (FE mode) tool explores only CMS.

2.1 Illustrative Example

To demonstrate the effectiveness of the tool we will use real-world data set from UCI Machine
Learning Repository [5].These data are the results of a chemical analysis of wines grown in
the same region in Italy but derived from three different cultivars. The analysis determined
the quantities of 13 constituents (Alcohol, Malic acid, Magnesium, Total phenols, etc.) found
in each of the three types of wines. The task is to perform wine classification (i.e. to assign
each wine to one of the three cultivars).
GTDR (FE mode) is applied in this case as a visualization tool i.e. in order to find the
best low-dimensional representation of data where the classification is straightforward. The
original feature space for classification task consist of 13 dimensions. GTDR (FE mode)
allows to reduce dimensionality down to 2 (this value is automatically selected inside the
tool). The resulting low-dimensional representation of the problem is depicted in figure 2.2.
Different classes are marked with different colors. The classification task in this represen-
tation is obvious (e.g. see figure 2.3 with simple 1-nearest neighbor space classification).

4



CHAPTER 2. OVERVIEW

Figure 2.2: Example of classification visualization with GTDR (FE mode): blue - class 1,
green - class 2, red - class 3.

Figure 2.3: Classification of wine in low-dimensional space: blue - class 1, green - class 2,
red - class 3.
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Chapter 3

Problem Statements

The GT DR module implements the solution of a mathematical task that can be formulated
as follows: based on the specified training data set (the structure of the training data set is
described below), create a DR-model Σ = {p, d, C,D} defined by the following parameters:

• p - dimension of the initial vector X;

• d - dimension of the compressed vector Λ;

• C - the compression procedure that reduces the vector X of dimension p to the d-
dimensional compressed vector Λ;

• D - the decompression procedure that recovers the d-dimensional compressed vector Λ
to the full dimensional vector X.

The DR-model must also comply with the specified requirements (depending on the
dimension reduction problem type), which are determined either by the dimension d of the
compressed vector or by the accuracy of the procedure.

As noticed in Chapter 2 the Dimension Reduction problem can be stated in two funda-
mentally different ways.

In the Unsupervised Dimension Reduction, considered below, the specified training data
set consists of N p-dimensional vectors {X1, X2, ..., XN} (prototypes). Also, the accuracy
of DR-model Σ = {p, d, C,D}, applied to the initial vector X, is determined by the error
of decompression, which is understood as the distance d(X,X∗) = ‖X − X∗‖ between the
original vector X and the reconstructed vector X∗ = D(C(X)), obtained by first applying
the compression procedure and then the decompression procedure to the original vector X.
For a given data set {X1, X2, . . . , XN} the accuracy of DR-model can be measured by the
root-mean-square error of decompression ε:

e1(Σ) =

√√√√ 1

N

N∑
i=1

‖Xi −X∗i ‖2.

Now let us formulate two possible statements for Supervised and Unsupervised Dimension
Reduction.

Unsupervised Dimension Reduction Task 1. For a given data set {X1, X2, . . . , XN},
construct a DR-model Σ = {p, d, C,D} belonging to the special class of modelsM such that
the root-mean-square error of decompression e1(Σ) does not exceed the specified value ẽ1
and the compressed vector has the smallest possible dimension d.

6



CHAPTER 3. PROBLEM STATEMENTS

Unsupervised Dimension Reduction Task 2. For a given data set {X1, X2, . . . , XN},
and the specified reduced dimension d, construct a DR-model Σ = {p, d, C,D} belonging to
the special class of models M and having the lowest possible root-mean-square error of
decompression e1(Σ) for the value of reduced dimension d, specified by the User.

Supervised Dimension Reduction. Now let us consider Supervised (Effective) Di-
mension Reduction problem statement. First of all we describe the training data set and the
way to estimate the accuracy of corresponding DR-model. Let Y = f(X), X ∈ Rd, Y ∈ Rq be
some dependency. The specified training data set consists of N d-dimensional input vectors
and corresponding q-dimensional output vectors, namely,

(
X,Y

)
= {(X1, Y1), (X2, Y2), . . . ,

(XN , YN)}, where Yi = f(Xi), i = 1, ..., N . The accuracy of DR-model Σ = {p, d, C,D}, ap-
plied to the initial vector X, is determined by the discrepancy between function value f(X)
for the initial vector X and function value f(X∗) for the reconstructed vector X∗ = D(C(X)),
obtained by applying first the compression procedure and then the decompression procedure
to the original vector X. For a given data set

(
X,Y

)
the accuracy of DR-model is governed

by the root-mean-square error ε:

e2(Σ) =

√√√√ 1

N

N∑
i=1

‖Yi − f(X∗i )‖2.

Finally, Effective Dimension Reduction problem can be formulated as follows. Based on a
given data set

(
X,Y

)
, construct a DR-model Σ = {p, d, C,D} having the lowest possible

root-mean-square error e2(Σ) for the value of reduced dimension d, specified by the User.
In the current version of GT DR it is assumed that

C : X ∈ Rp → Λ = Λ(X) = XBT ∈ Rd

D : Λ ∈ Rd → X∗ = X∗(Λ) = ΛB ∈ Rp

for some unknown matrix B ∈ Rd×p and that the elements of the given data set were
generated according to the following model:

Yi = f(Xi) ≈ g(Λ(Xi)) = g(XBT ), i = 1, . . . , N,

for some unknown function g(Λ),Λ ∈ Rd. Effective dimension reduction algorithm of GT
DR, implementing solution of Supervised Dimension Reduction, estimates the matrix B ∈
Rd×p using the sample

(
X,Y

)
. The rest of this document is devoted to this type of the

Dimension Reduction problem.

3.1 Mathematical Problem Statement for Supervised

(Effective) Dimension Reduction

In this section general problem statement for Supervised (Effective) Dimension Reduction
problem is described in details.

Let Y = f(X), X ∈ Rp, Y ∈ Rq be some considered dependency1. It may be some
physical experiment or solver code. Let Σ = {p, d, C,D} be some dimension reduction
procedure from certain class P , where

1also known as function

7



CHAPTER 3. PROBLEM STATEMENTS

• C : X ∈ Rp → Λ = Λ(X) ∈ Rd

• D : Λ ∈ Rd ← X∗ = X∗(Λ) ∈ Rp

GTDR (FE mode) procedure is a dimension reduction procedure that studies condi-
tional distribution FY |X of Y given X and extracts feature subspace of vectors Λ(X) ∈ Rd

such that Y independent of X|Λ(X) and d < p. In the current version of GTDR (FE
mode) only linear compression/decompression transformations are considered, i.e. Λ =
XBT

S and X∗ = ΛBS , where BS = [βT
1 , . . . , β

T
d ]T is a matrix of size d × p, comprised of

orthogonal vectors βi ∈ Rp, i = 1, d, which forms orthogonal basis in reduced dimension
space S.

The underlying model for effective dimension reduction can be represented as follows.
Consider the general data generation model Y = f1(X) + f2(X) · ε = f1(X) + ε(X), where
f1(·) and f2(·) are some generally nonlinear functions, ε is a white noise with standard normal
distribution: zero mean and some constant variance, and E[ε(X)|X] = 0. It is assumed that
the model can be rewritten in the following way: Y = g1(XB

T
1 ) + ε̃(g2(XB

T
2 )), where g1(·)

and g2(·) are some functions either linear or not and ε̃(·) is a some random functional with
zero expectation given X, i.e. E[ε̃(g2(XB

T
2 ))|X)] = 0.

Two cases should be distinguished:

1. Our goal is to construct subspace containing information about regression of Y with
respect to X, i.e. E[Y |X] = E[g1(XB

T
1 )+ε̃(g2(XB

T
2 ))|X] = E[g1(XB

T
1 )|X]. Subspace

SCMS = Span{B1} is called Central Mean Subspace (CMS). Extraction of such a
subspace can improve regression or optimization.

2. We study the conditional distribution FY |X including possible dependence of error
terms on the data (case when distributions for ε and X are not independent). The
subspace of interest is called Central Subspace (CS) and is more general than CMS
as SCMS ⊂ SCS = Span{B1, B2}. Extraction of such a subspace can improve, e.g.
regression model accuracy estimation.

3.1.1 Effective Dimension Reduction Procedure Performance Mea-
sures

There are four general criteria for evaluation of effective dimension reduction model perfor-
mance:

1. The accuracy of reduced dimension subspace reconstruction (can be estimated only
if we know exact dimension reduction subspace). This criterion is measured by the
following formula2

I1 =
∥∥∥(I −BSBT

S )B̂
∥∥∥
fro

3,

where BS is the real matrix that defines the reduced dimension subspace, B̂ is an
estimate, produced by effective dimension reduction algorithm, and I is an identity
matrix of appropriate size. This measure is applicable only to artificial problems as
the knowledge of reduced dimension subspace is necessary.

2Straightforward comparison of real and estimated by GTDR (FE mode) tool matrices is not consistent
as one can define infinitely many orthogonal bases in reduced dimension subspace (if reduced dimension is
higher than 1).

3The notation ‖A‖fro =
√
tr(ATA) means Frobenius norm for matrix A.

8



CHAPTER 3. PROBLEM STATEMENTS

2. The performance of the approximation model fsurr(Λ(X)), build using extracted fea-
tures as inputs instead of full-dimensional input vectors and some approximation tech-
nique, for example, GT Approx

I2 =
∥∥∥f(X)− fsurr(Λ(X))

∥∥∥.
3. The quantity of persistent information about dependency preserved in reduced dimen-

sion input vectors. This value can be measured as follows

I3 =
∥∥∥f(X)− f(X∗(Λ(X)))

∥∥∥.
4. The performance of optimization algorithm constrained by some time budget when

optimizing with respect to the coordinates of vectors from the extracted feature space.
The quantitative measure of this criteria is the value of objective function after the
optimization budget is spent. Obtained results should be compared with the value of
objective function, obtained using the same budget but when optimizing with respect
to the coordinates of initial input space.

3.2 State of the Art Methods

There are two types of Effective Dimension Reduction methods. Algorithms of the first type
are intended to estimate Central Subspace while the rest are used for Central Mean Subspace
estimation. GTDR (FE mode) tool belongs to the latter subset of methods. The most
important and most frequently cited algorithms are named in the following subsection along
with references to original articles.

All the algorithms for CMS estimation share the same structure, which can be described
in two steps:

1. On the first step estimate some functional Π(X) that belongs to SCMS using some
initial sample.

2. On the second step estimate effective dimension reduction projection matrix containing
desired number of first principal components of Π(X), that are constructed using
Principal Component Analysis technique [7].

Also important to notice that most of the methods impose rather strict probabilistic
assumptions on data in order to produce intended results. While GTDR (FE mode) tool
has rather mild limitations which are described further in section 6.3.

Central Subspace Estimation Methods. The following two methods and their vari-
ations are generally used for CS estimation: Sliced Inverse Regression (SIR) [10] and Sliced
Average Variance Estimation (SAVE) [2]. Both methods are based on the inverse regression
construction implying the fact that it is also contained in CS. The main drawback of these
two methods is that they require special rather strict probabilistic assumptions on the data
to be consistent.

Central Mean Subspace Estimation Methods. The following methods are used for
CMS estimation.

In case when function g1(·) is linear Partial Least Squares (PLS) [6] approach is proved
to give the best estimate.

9



CHAPTER 3. PROBLEM STATEMENTS

The Principal Hessian Directions (PHD) [11] and Iterative Hessian Transformation (IHT)
[3] methods use some estimates of mean Hessian matrix for considered dependence. But the
estimates require strict probabilistic assumptions on data to be consistent.

Rather large class of methods including Minimum Average Variance Estimation (MAVE)
[15, 1], Outer Product Gradient (OPG) [14] and Structural Adaptation via Maximum Min-
imization (SAMM) [4] significantly differ from others as they employ nonparametric regres-
sion to estimate some functional Π(X) used for CMS construction. The weak point in this
approach is that nonparametric regression is exposed to the curse of dimensionality which
makes it not reasonable tool in high dimensions.

Sliced Regression (SR) [13] method discretizes model output and uses one of the other
methods for further estimation which allows achieving more robustness.

GTDR (FE mode) tool is free from all these methods’ significant drawbacks due to the
special way of gradient approximation in the high-dimensional input space based on sparse
expansion in parametric functions of different types. This method is much less affected by
the curse of dimensionality which gives the opportunity to reduce dimension significantly
and effectively.

10



Chapter 4

Algorithm Description

In this chapter details on GTDR (FE mode) algorithm are given.

4.1 Projection Matrix Estimation

Let the initial dataset
(
X,Y

)
contain N pairs of input and output vectors. Two important

steps lie in the core of GTDR (FE mode). In short they can be described as follows.

1. On the first step for each point from the sample retrieve gradient estimate of the
dependence in the original dimension space using some of GTApprox capabilities:

∇̂f(X)
∣∣∣
X=Xi

=

(
∂f̂(X)

∂x1
, . . . ,

∂f̂(X)

∂xp

)∣∣∣
X=Xi

, i = 1, N.

2. On the second step calculate principal component directions for outer product (covari-
ance matrix) of gradient matrix

Γ̂ =

(
∇̂f(X)

∣∣∣
X=X1

, . . . , ∇̂f(X)
∣∣∣
X=XN

)
,

finding all nontrivial solutions to the problem: βjΓ̂Γ̂T = βj. Take first d directions
corresponding to the highest eigenvalues. Finally, effective dimension reduction pro-
cedure (actually central mean subspace representation) is defined by the projection

matrix B =
(
βT
1 , . . . , β

T
d

)T
.

In case we have black box function instead of sample the first step could be replaced with

the following procedure (for time saving purpose). The gradients ∇̂f(X)|X=Xi
, i = 1, N are

numerically estimated using robust difference scheme in the points of specific space filling
design: Faure sequence (see Design of Experiment (DoE) user manual for details). For this
purpose the black box interface of GTDR (FE mode) is provided which takes user
specified black box function as input. This approach is preferable in noise-free problem
settings.

GTDR (FE mode) shares basic ideas with most advanced state of the art CMS estima-
tion methods while our comparative study showed that GTDR (FE mode) demonstrates
better performance in terms of accuracy on toy and real world data and has less restrictive
limitations (see section 6.3 for details).

11



CHAPTER 4. ALGORITHM DESCRIPTION

4.2 Reduced Dimension Determination

GTDR (FE mode) tool also provides a functionality for automatical determination of
the intrinsic data dimension – the recommended dimension. The basic idea lying under the
dimension determination algorithm is as follows. If the projection matrix B was correctly
estimated by the main algorithm (see section 4.1) than we can assume that the central
mean subspaces spanned by bootstrapped gradients is quite stable. The same goes for the
complementary subspace. So we should seek for the dimension that provides the most stable
subspace among all the bootstrapped CMSs.

It is also important to notice that this procedure is not computationally difficult compared
to the main algorithm.

This functionality also provides a way of determining whether the tool worked out or not.
If the recommended dimension is full dimension, then either there is no intrinsic dimension
(in terms of linear combination of features) or there is not enough points for the accurate
estimation. This case accompanied Other cases (recommended dimension is lower than full
dimension) indicate that the algorithm detected some intrinsic data structure.

4.3 Projection Gradients and Cumulative Loadings

Projection gradients in case of linear model considered are exactly projection matrix B.
These coefficients may be further interpreted to determine the relative importance of the
original input.

Another illustrative output of the algorithm is cumulative loadings matrix L which repre-
sents the relative cumulative impact of the original space variables on the reduced-dimension
space. Let projection matrix B consist of elements bij, then for given reduced dimension d̃:

Ld̃j =

√√√√ d̃∑
i=1

(b2ij).

It means that in case the reduced dimension equals to d̃, the relative impacts of the original
variables in the reduced space are stored in the d̃’th row of matrix of cumulative loadings L.

Note, that these both outputs describe only relative behavior of the original inputs without
accounting for the scales (all original input variables are normalized by variance before the
estimation).
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Chapter 5

Internal Workflow

5.1 The Workflow

The internal workflow of the GTDR (FE mode) tool consists of the following steps.

1. Preprocessing. On the first step data preprocessing is performed in the following
way: redundant data is removed from the training set and data is normalized. See
Section 5.2 for details. This step is omitted in black-box implementation.

2. Construction of GTDR (FE mode) procedure. On the second step actual effec-
tive dimension reduction is performed. See Section 4 for details.

5.2 Preprocessing

In case of sample-based interface some preprocessing is performed. As we work with initial
training dataset some reasonable preprocessing must be applied to it in order to remove
possible degeneracies in the data. Let

(
X,Y

)
be the Ñ × (p̃ + q) matrix of the training

data, where the rows are (p̃+ q)-dimensional training points, and the columns are individual
scalar components of the input or output. The matrix

(
X,Y

)
consists of the sub-matrices

X and Y. We perform the following operation with the matrix
(
X,Y

)
:

1. We remove all constant columns in the sub-matrix X. A constant column in X means
that all the training vectors have the same value of one of the input components. In
particular, this means that the training DoE is degenerate and lies in a proper subspace
of the design space.

2. We remove repeating rows in the matrix
(
X,Y

)
. A repeating row means that the

same training vector is included more than once in the training matrix. Repetitions
bring no additional information and are therefore ignored; a repeating row is counted
only once.

If the above operations are nontrivial, e.g., if the matrix X does contain constant columns
or the matrix

(
X,Y

)
does contain repeating rows, then the removals are accompanied by

warnings.
As a result of these operations, we obtain a reduced matrix

(
X̃, Ỹ

)
consisting of the

submatrices X̃ and Ỹ. Accordingly, we define effective input dimension (p) and the effective

sample size (N) as the corresponding dimensions of the sub-matrix X̃.

13



CHAPTER 5. INTERNAL WORKFLOW

Note that after removing repeating rows in
(
X,Y

)
the reduced matrix may still contain

rows which have the same X components but different Y components. This means that the
training data is so noisy that, in general, several different outputs correspond to the same
input. If the training data does contain rows with equal X but different Y components, the
tool produces a warning.

The effective dimension reduction space is estimated by GTDR (FE mode) using the

reduced matrix
(
X̃, Ỹ

)
rather than the original matrix

(
X,Y

)
.
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Chapter 6

Procedure Usage

In this section the usage of the procedure is described. The process of tool application is
presented in the figure 6.1.

Figure 6.1: GTDR (FE mode). Scheme of Application

As shown in the figure the workflow of GTDR (FE mode) tool application consists of
three consecutive steps:

1. Prepare and clean up the data. The GTDR (FE mode) does some automatic data
preprocessing. See section 5.2 for details. This step is omitted in black-box implemen-
tation.

2. Run the GTDR (FE mode) tool to construct data-based effective dimension reduc-
tion module. This is the most time-consuming part.

3. Use module built on previous step to compress or decompress the data. At this stage
for compression user also may specify the desired value of reduced dimension, otherwise
tool estimated dimension used for compression.

15
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6.1 Required Parameters

Some parameters are required for the tool. They are listed below.

• In sample-based interface:

X : train points;

Y : train values.

• In black-box-based interface:

BlackBoxFunctionInterface BB(X) : interface to black box function;

FunctionEvaluationBudget : number of times black-box function is allowed to be
called;

InputDimensionality p : the dimensionality of input variables (X);

OutputDimensionality q : the dimensionality of output variables (Y ).

6.2 Compression/Decompression Procedures Output

Both black-box and sample based implementations have unified compression/decompression
procedures. The outputs are described below.

• The compression procedure performs orthogonal projection of the full-dimensional
vectors specified into the Central Mean Subspace estimated by the tool. User may
specify the dimensionality of reduced space if he/she has some prior knowledge or rely
on the tool dimensionality estimation block. The gradients of this projection provided
by the tool is exactly projection matrix B (see Section 4 for details).

• The decompression procedure performs orthogonal projection of the vectors speci-
fied from the Central Mean Subspace estimated by the tool into original full-dimensional
space. The data can have any dimensionality (less than full). The gradients of this pro-
jection provided by the tool is exactly transposed projection matrix B′ (see Section 4
for details).

6.3 Limitations

All limitations of GTDR (FE mode) are just reasonable assumptions on initial training
dataset. The general restriction on the minimum size N of the training set is

N > 2p+ 2,

where p is the input dimension of the data. As explained in Section 5.2, this condition refers
to the effective values, obtained after preprocessing of the training data. An error with the
corresponding error code will be returned if this condition is violated.

The maximum size of the training sample which can be processed by the tool is primarily
determined by the user’s hardware. In practice GTDR (FE mode) can handle samples of
up to 200k points and dimension up to 500 on conventional PC with 4 Gb RAM.
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Chapter 7

User Configurable Options

This chapter summarizes user options. Note that only a minor amount of options is available
in the interface and may be configured by user. These options are mainly intended to control
tradeoff between learning time and tool accuracy.

7.1 Common options for sample-based techniques

Options in this section are available for all sample-based techniques (sample-based FE,
dimension-based and error-based DR).

• GTDR/Normalize
In some cases components of input vector should be normalized, i.e. centered and
then standardized by the corresponding standard deviation. Such transformation is
useful when components of input vector have different physical meaning (represented
in different physical units). By default the need to normalize input is determined
automatically, while the option allows user to explicitly enable or disable normalization.

– true: enable normalization

– false: disable normalization

– Auto: automatic normalization

Values boolean, or Auto
Default Auto

7.2 Dimension-based and error-based DR options

Options in this section configure the behaviour of dimension-based and error-based algo-
rithms. These techniques are sample-based.

• GTDR/MinImprove
Dimension-based dimension reduction procedure allows increasing accuracy of recon-
struction by approximating nonlinear deviation of reconstructed manifold from the
linear hyperplane given by principal components. This approximation is done itera-
tively and the approximation process is stopped on such iteration, during which the
decrease of reconstruction error is less than MinImprove times the reconstruction error
on the previous iteration.
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Values double in range (0, 1]
Default 0.01

• GTDR/Technique
Specifies the dimension reduction technique.

Values enumeration: NLPCA, PCA
Default NLPCA

7.3 Feature extraction options

Options in this section are available in sample-based FE mode.

• GTDR/Accelerator
This option is a five-position switch that controls tradeoff between speed and accuracy.
It affects training time by changing default values of other parameters of the algorithm.
Possible values are from 1 (low speed, highest quality) to 5 (high speed, lower quality).
Default value is 2.

Values integer in range [1, 5]
Default 2

7.4 Feature extraction options (blackbox)

Options in this section are available in FE mode with blackbox.

• GTDR/DiffFilterSize
Sets the length of filter used for numerical differentiation (in general, greater length
yields more robust numerical gradients, but also requires more points for each gradient
estimating).

Values integer in range [1, 10]
Default 1

• GTDR/NumDiffStep
Sets relative numerical differentiation step.

Values double in range (0, 0.1]
Default 10−7
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Chapter 8

Usage Examples

In this section we present application of GTDR (FE mode) to some artificial toy func-
tions and some real- world data sets to demonstrate method properties. All the tests were
performed using GTDR (FE mode) tool with Acceleration = 3 and default other pa-
rameters in sample-based interface.

8.1 Artifical Examples

In this section we demonstrate the performance of GTDR (FE mode) on some artificial
functions.

8.1.1 Example 1: Simple Function

At first we will consider the function:

f(x1, x2, x3, x4, x5) =

(
5∑

i=1

xi

)
(x1 + x2), xi ∈ [0, 1], i = 1, . . . , 5. (8.1)

According to GTDR (FE mode) problem statement in this case X can be compressed
from dimension 5 to dimension 2 without loss of it’s descriptive power. Of course one doesn’t
know true data dimensionality beforehand, so in this case we will demonstrate GTDR (FE
mode) performance on this data depending on sample size and dimension we decided to
compress data to.

As a measure of method’s quality we will use the following variability index measure (see
Section 3.1.1 for more details on the performance measures):

I(X,Y,Σ) =
〈∥∥∥Y − f(X∗ (Λ (X))

∥∥∥〉 (8.2)

where X,Y - test data sample, Σ = {p, d, C : X → Λ(X), D : Λ→ X∗(Λ)} is the constructed
GTDR (FE mode) procedure, < .. > is the sample mean.

Results of these experiments are presented in the table 8.1.
Looking at the result one may notice that difference between function value computed for

originalX and compressed and then reconstructedX becomes quite small when we reach true
dimension of the data and in this simple example doesn’t grow if we select dimension greater
than needed value. This example highlights one of the important method property: if the
assumption on the data structure approximately holds, i.e. f(X) ≈ g(XBT ) + ε, E(ε) = 0,

19



CHAPTER 8. USAGE EXAMPLES

Sample size Compressed dimension

0 1 2 3 4 5

30 1,2457e-00 7,3653e-01 2,4325e-04 2,4251e-04 3,6581e-05 4,4408e-15

100 1,2457e-00 6,9524e-01 3,4734e-05 3,2909e-05 2,9697e-05 4,4408e-15

200 1,2457e-00 7,7082e-01 1,1968e-04 7,6521e-05 3,9005e-05 4,4408e-15

Table 8.1: GTDR (FE mode) variability index measure on artificial function 1

then in order to keep all the information in the inputs it’s enough to compress to any
dimension not smaller than the true one, and generally the more dimensions are kept the
smaller the error is.

8.1.2 Example 2a: More Complex Function

Another example is a little bit more complex function:

f(x1, x2, x3, x4, x5) =

(
5∑

i=1

xi

)(
(2x1 + x3)

2 + 0.1x2
)

+ x34, xi ∈ [0, 1], i = 1, . . . , 5. (8.3)

One may see that this function can be approximately compressed to dimension 3 and with
good precision to dimension 4. Results of the experiments with different reduced dimensions
and sample size are presented in Table 8.2. The same index of variability as in the previous
section is used for GTDR (FE mode) performance measure.

Sample Compressed dimension

size 0 1 2 3 4 5

30 5,2687 1,7321 1,4648 0,7108 0,5409 2,1316e-14

100 5,2687 1,5188 1,5410 0,1657 0,0007 3,9079e-14

200 5,2687 1,3644 0,8532 0,1882 0,0002 5,6843e-14

Table 8.2: GTDR (FE mode) variability index measure on artificial function 2

As we increase compressed dimension similar behavior as before is observed. Also notice
that although 30 points seem to be not enough to accurately catch data structure, the error
still decreases monotonically even in this case.

8.1.3 Example 2b: More Complex Function

Consider in previous example we have the black-box function instead of the initial dataset.
We can apply black-box implementation of GTDR (FE mode) to estimate CMS. The
corresponding variability indices (the same as in Section 8.1.2) are represented in Table 8.3.
Instead of initial sample size we used the same function evaluation budget.
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Budget Compressed dimension

size 0 1 2 3 4 5

30 5,2687 0,2244 0,2172 0,1196 0,1083 6,6407e-16

100 5,2687 0,0599 0,0535 0,0036 6,2794e-10 2,38778e-15

200 5,2687 0,0991 0,0709 0,0022 4,4866e-11 2,6151e-15

Table 8.3: GTDR (FE mode) variability index measure on artificial function 2 for Black-
Box implementation

This example compared to the example in Section 8.1.2 shows that in case user has black-
box function for data generation it may be preferable to plug it directly into the GTDR
(FE mode) (instead of train data sample generation).

8.1.4 Example 3: Simple Function with Noise

And the last example would be:

f(x1, x2, x3, x4, x5) =

(
5∑

i=1

xi

)
(x1 + x2) + ε, xi ∈ [0, 1], i = 1, . . . 5, (8.4)

ε is the normally distributed value with zero mean, E[ε] = 0, and variance σ2 = 0.1.
In this example we will check how noise in data affects the results. Computed errors are

presented in the table 8.4.

Sample Compressed dimension

size 0 1 2 3 4 5

30 1,2457 0,6795 0,0142 0,0295 0,0207 0,0517

100 1,2457 0,6678 0,0013 0,0822 0,0110 0,0248

200 1,2457 0,7685 0,0617 0,0602 0,0399 0,0811

Table 8.4: GTDR (FE mode) variability index measure on artificial function 3

One may see that noise affects the results of the procedure, but estimated errors are
actually comparable to the noise value, meaning that procedure results are quite robust to
the noise.

8.2 Real world data examples

In this section we will show application of GTDR (FE mode) to some real world data
problems.
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8.2.1 T-AXI problem

• Problem description:
In this problem we consider The T-C DES (Turbomachinery Compressor DESign)
code (meanline axial flow compressor design tool), which is the first step of T-AXI (an
axisymmetric method for a complete turbomachinery geometry design [12]).

Program tcdes.e3c-des.exe is used for calculation of outputs f(X) for new generated
inputs X. Program can be downloaded from the link:
http://gtsl.ase.uc.edu/T-AXI/.

Program uses a 163 dimensional feature vector describing geometry and the working
condition as an input.

The task is to compress features the way that Compressor Pressure Ratio (With IGV)
output can be reconstructed with sufficient precision. The dependency is considered
only for X ∈ V (X0) = {X : xi ∈ [(1 − α)x0i , (1 + α)x0i ]}, i = 1, .., 163 where α = 0.1,
X0 = (x01, .., x

0
163) is given in Tables 8.5 – 8.7.

Stage

Parameter 1 2 3 4 5 6 7 8 9 10

Stage rotor inlet angle [deg] 10,3 13,5 15,8 18 19,2 19,3 16,3 15 13,6 13,4
Stage rotor inlet Mach no. 0,59 0,51 0,475 0,46 0,443 0,418 0,402 0,383 0,35 0,313
Total Temperature Rise [K] 52,696 52,301 51,117 49,736 49,144 43,617 45,69 47,269 48,255 47,565

Rotor loss coef. 0,053 0,0684 0,0684 0,0689 0,069 0,069 0,069 0,069 0,069 0,07
Stator loss coef. 0,07 0,065 0,065 0,06 0,06 0,065 0,065 0,065 0,065 0,1
Rotor Solidity 1,666 1,486 1,447 1,38 1,274 1,257 1,31 1,317 1,326 1,391
Stator Solidity 1,353 1,277 1,308 1,281 1,374 1,474 1,379 1,276 1,346 1,453

Stage Exit Blockage 0,963 0,956 0,949 0,942 0,935 0,928 0,921 0,914 0,907 0,9
Stage bleed [%] 0 0 0 0 1,3 0 2,3 0 0 0

Rotor Aspect Ratio 2,354 2,517 2,33 2,145 2,061 2,028 1,62 1,417 1,338 1,361
Stator Aspect Ratio 3,024 2,98 2,53 2,21 2,005 1,638 1,355 1,16 1,142 1,106

Rotor Axial Velocity Ratio 0,863 0,876 0,909 0,917 0,932 0,947 0,971 0,967 0,98 0,99
Rotor Row Space Coef. 0,296 0,4 0,41 0,476 0,39 0,482 0,515 0,58 0,64 0,72
Stator Row Space Coef. 0,3 0,336 0,438 0,441 0,892 0,455 0,886 0,512 0,583 0,549
Stage Tip radius [m] 0,3507 0,3358 0,3283 0,3212 0,3151 0,3084 0,3042 0,2995 0,297 0,2946

Table 8.5: Stage data for 10 stage design (stage.e3c-des)

Mass Flow Rate [kg/s] 54,4
Rotor Angular Velocity [rpm] 12299,5

Inlet Total Pressure [Pa] 101325
Inlet Total Temperature [K] 288,15

Mach 3 - Last Stage 0,272
Clearance Ratio 0,0015

Table 8.6: Initial data for 10 stage design (init.e3c-des)

• Solution workflow:
We perform the following steps to perform the analysis:

1. We generate data sample of 500 uniformly distributed random points within the
region V (X0).

2. The GTDR (FE mode) procedure is constructed using the generated sample.
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Soldity 0,6776
Aspect ratio 5,133

Phi Loss Coef. 0,039
Inlet Mach 0,47

Lambda 0,97
IGV Row Space Coef. 0,4

Table 8.7: IGV data for 10 stage design (igv.e3c-des)

3. To check the performance of GTDR (FE mode) Index of Variability is calcu-
lated for different compression dimensions. Index of variability is computed as
follows (see Section 3.1.1):

I(d) =

√
1
N

∑N
i=1(Yi − f(X∗(Λd(Xi))))2

maxi=1,..,N(Yi)−mini=1,..,N(Yi)
100%, (8.5)

where M is the size of the test sample (N = 10000), Λd is d-dimensional repre-
sentation of X ∈ R163. The plot of the index against the reduced dimension is
represented on the Figure 8.1

Figure 8.1: T-AXI. Index of variability for different compression dimensions d

• Results:
Plot shows that reducing dimension up to 2 keeps index of variability at 0.3%. There-
fore the input dimension could be reduced from very high number of 163 variables
down to 2 most representative features without significant loss of information.

8.2.2 Airfoil optimization problem

• Problem description:
This problem is devoted to optimization of a wing section airfoil. An airfoil is given by
59-dimensional vector consisting of coordinates of special points on airfoil surface. The
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goal of optimization is to find minimum drag coefficient in a transonic flight regime
subject to given lift coefficient and constrained spar width:

min
X∈R59

CD(X, θ(X)) s.t.


|CL(X, θ)− CL0| < ε,
tfs(X) ≥ t0fs,
trs(X) ≥ t0rs,
θ ∈ [θmin, θmax],

where

– X is the description of an airfoil;

– CD(X, θ) is the drag coefficient;

– CL(X, θ) and CL0 is the lift coefficient and it’s target value respectively;

– tfs, t
0
fs, trs and t0rs are the widths of the front and rear spar and their lower bounds

respectively;

– θ, θminand θmax are the trailing edge angle and its minimum and maximum values
respectively.

To compute CL(X, θ) and CD(X, θ) an aerodynamic full-potential 2D solver is used.
Solver is based on 2D full-potential model of invised compressible fluid (see [8] for
details).

• Solution workflow:
We perform the following steps to perform the analysis:

1. Before actual optimization we perform some preliminary data transformation us-
ing two approaches:

– Principal Component Analysis (PCA) of initial dataset in order to compress
data to some low-dimensional subspace (as optimization in high-dimensional
space is very ineffective) preserving structural features of an airfoil.

– PCA that transforms original data into full-dimensional basis of principal
components followed by GTDR (FE mode) procedure (PCA+FE) com-
pressing data to some low-dimensional feature subspace.

2. Then the optimization procedure is performed in the low-dimensional space ex-
tracted by one of the described approaches starting from some random initial
point.

Additional to the optimization experiment some approximation experiment was per-
formed. The dataset of 1500 airfoils was compressed to some low-dimensional space
and an approximator that uses the compressed representation as inputs and CD as
output was constructed by GT Approx. The errors of approximation were measured
on an independent dataset. The results are represented in the table 8.8.

Optimization was performed by GT Opt starting from 20 random (but the same for
the both approaches) points in the space of dimension 10. The results are represented
in the table 8.9.

• Results:
Approximation results show that GTDR (FE mode) tool allows to reduce dimension
of feature space from 10 down to 3 almost without loss of regression information.
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Method Reduced dimension Mean Absolute Error Mean Squared Error

PCA 2 0.0033 2.0568e-5

PCA + GT (FE) 2 9.6621e-4 2.0655e-6

PCA + GT (FE) 3 6.5416e-4 1.0901e-6

PCA 10 5.3667e-4 9.0450e-7

Table 8.8: Airfoil optimization problem. Approximation performance in the reduced-
dimension spaces

Method Mean(CD) Std(CD) Min(CD) Max(CD)

PCA 0.0132 0.0030 0.0065 0.0189

PCA + GT (FE) 0.0067 0.0034 0.0037 0.0168

Table 8.9: Airfoil optimization problem. Optimization performance in the reduced-dimension
spaces

Optimization results provide more evidence in favor of much better information preser-
vation of GTDR (FE mode) than original PCA. This gives an opportunity to achieve
better optimization results given the same time budget (150 computations of objective
function in the considered case).

8.2.3 Fuel System Analysis problem

• Problem description:
The objective of the Research into Fuel Systems project is to deliver application that
can predict pressures and mass flows for gravity feed aircraft fuel systems [9]. The
desktop application comprises a two phase flow (air and fuel) analysis engine that is
derived from experimental observations.

One of the task the pSeven Core models are used for in this project is to approximate
pressure loss coefficient and volume flow quality of the fuel flow on the diaphragm
section of the pipe using experimental data.

Experimental data is a 244 points sample with 6 features describing fuel flow (flow
velocity (V), pressure after the diaphragm (P), temperature (T), densities of fuel
(ρfuel) and air (ρair), ratio of diaphragm diameters (ri)) and two outputs pressure loss
coefficient (Cp) and volume flow quality (Q).

We will use GTDR (FE mode) to determine which features should be measured
with the most accuracy. This is very important for experimental design: if the feature is
unimportant then we shouldn’t do additional expensive experiments in order to explore
the dependence of the outputs (Cp and Q) on this feature, and we can measure this
feature with less precision in the experiments.

• Solution workflow:
We perform the following steps to perform the analysis:
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1. We use given sample of M = 244 points with experimental data.

2. The GTDR (FE mode) procedure is constructed using the generated sample.

3. To check the performance of GTDR (FE mode) surrogate models were build
on compressed data, see Section 3.1.1.

The results are shown on the figure 8.2.

(a) Dependence of Q value approximation error on reduced dimension

(b) Dependence of Cp value approximation error on reduced dimension

Figure 8.2: Fuel System Analysis problem results. Note: This image was obtained using an
older pSeven Core version. Actual results in the current version may differ.

• Results:
Plot shows that to approximate Cp with precision better than when using all input
variables its enough to take only 3 features constructed GTDR (FE mode) and to
approximate Q with precision better than when using all variables its enough to take
only 1 feature constructed by GTDR (FE mode).
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