
pSeven Core

GTDF
Generic Tool for Data Fusion



c© 2010 — 2023 DATADVANCE, llc

Contact information

Phone +7 (495) 669 68 15

Web https://www.pseven.io/

Email support@datadvance.net Technical support,
questions, bug reports

info@datadvance.net Everything else

Mail DATADVANCE, llc
Nauchny proezd, 17, 15th floor, office
XXXI
117246 Moscow
Russia

User manual prepared by Zaytsev A. (principal author) and Burnaev E.

i

https://www.pseven.io/
mailto:support@datadvance.net
mailto:info@datadvance.net


Contents

List of figures iv

List of tables v

1 Introduction 1
1.1 What is GT DF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Documentation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Overview 2
2.1 Sample based problem statement . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Black box based problem statement . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Toy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Workflow 5
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Black box for data fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 Design of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Approximation techniques 8
4.1 General description of presented approximation techniques . . . . . . . . . . 8

4.1.1 HighFidelityApprox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.2 DiffApprox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.3 VariableFidelityGaussianProcess . . . . . . . . . . . . . . . . . . . . . 10
4.1.4 SparseVariableFidelityGaussianProcess . . . . . . . . . . . . . . . . . 10

4.2 General description of presented approximation techniques for Blackbox-based
Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Selection of approximation technique 12
5.1 Manual selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Automatic selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Automatic selection for black box GTDF . . . . . . . . . . . . . . . . . . . 13

6 User configurable options 16
6.1 Interpolation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Compensating low fidelity function bias . . . . . . . . . . . . . . . . . . . . . 17
6.3 Componentwise training of the approximation . . . . . . . . . . . . . . . . . 17
6.4 Control over training time and accuracy of approximation . . . . . . . . . . 18

ii



CONTENTS

6.5 Accuracy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.6 Internal validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Usage examples 21
7.1 Artificial example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.1.1 Sparse variable fidelity gaussian processes . . . . . . . . . . . . . . . 22
7.1.2 Blackbox-based variable fidelity gaussian processes . . . . . . . . . . 23
7.1.3 Compensating low fidelity function bias . . . . . . . . . . . . . . . . . 24

7.2 Real data examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2.1 Modelling aerodynamic lift and drag coefficients for a fixed airfoil . . 25
7.2.2 Modelling aerodynamic lift and drag coefficients . . . . . . . . . . . . 26
7.2.3 Designing linear cellular alloys . . . . . . . . . . . . . . . . . . . . . . 28
7.2.4 Fluidized Bed Process Experimental data . . . . . . . . . . . . . . . . 28

A Variable fidelity gaussian processes 32
A.1 Used class of GPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Tuning of covariance function parameters . . . . . . . . . . . . . . . . . . . . 34
A.3 Sparse gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.4 Black box for low fidelity model . . . . . . . . . . . . . . . . . . . . . . . . . 35

B The GTApprox workflow 37
B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
B.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.3 Individual approximation techniques . . . . . . . . . . . . . . . . . . . . . . 38

B.3.1 Regularized linear regression . . . . . . . . . . . . . . . . . . . . . . . 39
B.3.2 1D Splines with tension . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.3.3 High Dimensional Approximation . . . . . . . . . . . . . . . . . . . . 39
B.3.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.3.5 High Dimensional Approximation combined with Gaussian Processes 47
B.3.6 Sparse Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.3.7 Response Surface Model . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.5 Example: comparison of the techniques on a 1D problem . . . . . . . . . . . 51

C Selection of approximation technique for GTApprox 53
C.1 Manual selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C.2 Automatic selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References 57

Acronyms 59

Index: Concepts 60

Index: GTDF Options 62

Index: GTApprox Options 63

iii



List of Figures

2.1 Toy problem example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Size of low fidelity set of points . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1 Decision tree for GTDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Decision tree for GTDF for BB available . . . . . . . . . . . . . . . . . . . 15

7.2 Comparison of SVFGP and VFGP learning time. Note: This image was ob-
tained using an older pSeven Core version. Actual results in the current
version may differ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.3 Comparison of VFGP and blackbox-based VFGP. Note: This image was ob-
tained using an older pSeven Core version. Actual results in the current
version may differ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.4 Compensating low fidelity function bias using GTDF/UnbiasLowFidelityModel
option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.5 Drag coefficient Cd approximation. Note: This image was obtained using an
older pSeven Core version. Actual results in the current version may differ. . 26

7.6 Airfoil parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.7 Fluidized Bed Process Experiment. Dependence with respect to sample size . 29
7.8 Model function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.9 Artificial function approximation errors . . . . . . . . . . . . . . . . . . . . . 31

B.1 Comparison of different methods . . . . . . . . . . . . . . . . . . . . . . . . 52

C.1 The internal decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
C.2 The “sample size vs. dimension” diagram of default techniques . . . . . . . . 56

iv



List of Tables

7.1 Model function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 MSE for Airfoil problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Averaged approximation MSE for control sample . . . . . . . . . . . . . . . 27
7.4 Designing linear cellular alloys problem. Mean errors . . . . . . . . . . . . . 28
7.5 Designing linear cellular alloys problem. Max errors . . . . . . . . . . . . . . 28
7.6 Fluidized Bed Process Experiment. Mean errors . . . . . . . . . . . . . . . . 29
7.7 Fluidized Bed Process Experiment. Max errors . . . . . . . . . . . . . . . . . 29

B.1 Limitations of approximation techniques . . . . . . . . . . . . . . . . . . . . 51

v



Chapter 1

Introduction

1.1 What is GT DF

GT DF is a software package for

• construction of approximations fitting user-provided training data including both high
and low fidelity data,

• assessment of quality of the constructed approximations.

1.2 Documentation structure

The manual is organized as follows.

• Chapter 2 describes a problem statement and GTDF tool’s functionality.

• Chapter 3 describes a general workflow of GTDF.

• Chapter 4 describes available DF techniques.

• Chapter 5 describes how the GTDF selects a DF techniques.

• Chapter 6 provides some additional remarks about GTDF and describes available
options.

• Chapter 7 gives a number of artificial and real examples of GTDF usage.

• Chapter A describes mathematical foundation of provided GTDF techniques.

• Chapters B, B.3 and C briefly describes GTApprox and provides information about
GTApprox necessary for GTDF usage.
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Chapter 2

Overview

A common situation in surrogate modelling is availability of a number of ways to model
physical process Y = f(X) [13, 14]. For example, one can use two grids with different
fidelities or two different systems of ODE to model the same physical process. Both models
approximate a real value of the function f(X) in a point X, but have different fidelities. A
high fidelity model (fine model) fh(X) is more accurate, but needs more time to produce
result, and a low fidelity model (coarse model) fl(X) is less accurate, but can be computed
much faster in comparison with the first model. So, a set of the known values of the first
model fh(X) is much smaller than a set for the second model values fl(X) due to high
computational costs of the high fidelity model evaluation. Using user-provided learning sets
of the high fidelity function and the low fidelity function values at given points we build an
approximation of the high fidelity function fh(X), namely we try to predict values of high
fidelity function using both values from high fidelity set and low fidelity set. A data fusion
technique is a method to take into account both values from the high fidelity and the low
fidelity model when constructing an approximation.

2.1 Sample based problem statement

The problem to be solved is to build an approximation f̂h(X) of fh(X) for X ∈ X using
a training set. The training set consists of two parts. The first part Dh = (Fh,Xh) =
{(fh(Xh

i ), Xh
i )}Nh

i=1 includes a set of pairs of points and high fidelity function values at this
points. The matrix Fh corresponds to the output data of high fidelity model, and the matrix
Xh corresponds to the input data of high fidelity model. The second part Dl = (Fl,Xl) =
{(fl(X l

i), X
l
i)}

Nl
i=1 includes a set of pairs of points and low fidelity function values at this

points. The matrix F l corresponds to the output data of low fidelity model, and the matrix
Xl corresponds to the input data of low fidelity model. Input vectors Xh

i , X l
i belong to Rdin ,

output vectors fh(X
h
i ), fl(X

l
i) belong to Rdout . It is supposed that Nh � Nl.

The input and output for the GTDF is

• Input

– Low fidelity data Dl and high fidelity data Dh;

– Options.

• Output

– Approximation of high fidelity function f̂h(X);

2



CHAPTER 2. OVERVIEW

– Partial derivatives of approximation ∂f̂h(X)
∂xi

with respect to input dimension xi, i =
1, 2, . . . , din (X = {x1, x2, . . . , xdin});

– Accuracy evaluation AE(X)1 (if available) for approximation, see also Section 6.5.

If dout is bigger than 1 we suppose that the number of output dimensions dout for low
and high fidelity functions coincides and j-th output dimension of low fidelity function is a
coarse model for j-th output dimension of high fidelity function.

2.2 Black box based problem statement

Another problem statement arises when a black box for low fidelity model is available.
The problem to be solved is to build an approximation f̂h(X) of fh(X) using a training

set of high fidelity model values and black box for low fidelity model. A set of points
Dh = (Fh,Xh) = {(fh(Xh

i ), Xh
i )}Nh

i=1 includes a set of pairs of points and high fidelity function
values at this points. Black box for low fidelity model provides a result of calculation of low
fidelity model fl(X) at any feasible point of the design space X.

In this case GTDF generates design of experiment for low fidelity model Dl = (Fl,Xl) =
{(fl(X l

i), X
l
i)}

Nl
i=1 and builds approximation using Dh and generated Dl using some GTDF

technique. To build an approximation we use some Blackbox-based Data Fusion technique
(BB DF). Prediction of the high fidelity function for the given input is done as follows.

• Blackbox is used to calculate the value of low fidelity function

• Approximation of high fidelity function is updated using calculated value in order to
obtain more accurate prediction.

In general, such adaptive approach update scheme significantly improves accuracy of
prediction, see for example toy problem from the next section.

2.3 Toy problem

We present a toy problem inspired by the problem described in [14]. Suppose our high
fidelity model is a function

fh(x) = (6x− 2)2 sin(12x− 4)

and our low fidelity model is a function

fl(x) = Afh(x) +B(x− 0.5)− C,

we use for our example A = 0.5, B = 10, C = 5. Suppose we know low fidelity function
values at points Xl = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and high fidelity function
values only at points Xh = {0, 0.05, 0.2, 0.55, 0.95, 1}. We learn an approximation of the high
fidelity function using values of the low fidelity function at points Xl and the high fidelity
function at points Xh.

Results for different techniques are given in figure 2.1. We use three methods to build an
approximation. For construction of an approximator we use GTApprox [8] and only values

1Accuracy Evaluation’s purpose is to estimate the accuracy of the constructed approximation at different
points of the design space

3



CHAPTER 2. OVERVIEW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

X

Y

 

 

fl
fh
Yl
Yh
GT Approx through Yh
VF GP
BB VF GP

Figure 2.1: Example for model function. Blue dotted line corresponds to the high fidelity function
fh(X), magenta dotted line corresponds to the low fidelity function fl(X). Points of learning sample
for the high fidelity function are depicted as blue squares, points of learning sample for the low
fidelity function are depicted as magenta circles. Derived approximation using GTApprox and
high fidelity data is depicted as the red dash-dotted line, derived approximation using VFGP and
both high and low fidelity data is depicted as the green solid line, BB VFGP is depicted as the
cyan dash-dotted line.
Note: This image was obtained using an older pSeven Core version. Actual results in the current
version may differ.

of the high fidelity function. We learn variable fidelity gaussian processes approximator
VFGP [1, 14, 26] using both values of the high and low fidelity functions at given points.
Also we learn VFGP with available black box for low fidelity function.

One can see that we obtain more accurate resulting approximation using more data of
different fidelity to learn an approximator. Additional information from the less accurate
model helps us to resolve difficulties with approximation of high fidelity function. Using
black box for low fidelity function we obtain results superior to results obtained using other
methods.

This problem is provided as a python script in the documentation in the file toyExample.py.
A number of real and artificial data examples is presented in Chapter 7.
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Chapter 3

Workflow

3.1 Overview

The workflow with the GTDF includes the following elements.

• Construction of the model. Construction of the model internally consists of the
following steps:

1. Preprocessing. At this step, redundant data are removed from the training set.
See Section 3.2.

2. Analysis of training data and options, selection of approximation tech-
nique. At this step, the parameters of the training data and the user–specified
options are analyzed for compatibility, and the most appropriate approximation
technique is selected. See Chapter 5.

3. Construction of the main approximation with (optionally) Accuracy
Evaluation prediction. At this step, the main approximation, to be returned
to the user, is constructed. See Chapter 4 for description of individual approx-
imation techniques. Also, the accompanying Accuracy Evaluation prediction is
constructed if the corresponding option is turned on.

After the model has been constructed, the user can view training settings and export
the approximation to a text file.

• Evaluation of the model. One can evaluate the approximation, gradient and accu-
racy prediction (if available) using the model constructed.

3.2 Preprocessing

Before applying the approximation technique to the training set, this training set is pre-
processed in order to remove possible degeneracies in the data. We do this in two steps.
At first step we remove repeating pairs of (f(X), X) from the samples Dl = (Yl,Xl) =
{(fl(X l

i), X
l
i)}

Nl
i=1, Dh = (Yh,Xh) = {(fh(Xh

i ), Xh
i )}Nh

i=1 of correspondingly low and high fi-
delity values. We obtain reduced samples D′l = (Y′l,X

′
l), D

′
h = (Y′h,X

′
h). Then we search

for constant columns in input data and removes them if in both high and low fidelity data
these columns are constant. After removing constant columns in input data we search for
constant columns in output data. The whole set of columns is I = {1, 2, . . . , dout}. We split

5



CHAPTER 3. WORKFLOW

columns in Y′l to constant Iconstl ⊆ I and nonconstant Inonconstl . Also, we split columns in
Y′h to constant Iconsth ⊆ I and nonconstant Inonconsth . There are three possible situations for
column in I:

• For columns in Iconsth we create constant approximation. It means that these corre-
sponding outputs are predicted by some constants and AE for this prediction unavail-
able.

• For columns in Iconstl ∩ Inonconsth we use HFA because we can’t get any information from
constant rows in low fidelity data.

• For columns in Inonconstl ∩ Inonconsth we use corresponding GTDF technique because in
this case it makes sense to use both high and low fidelity data.

Note, that if dout is bigger than 1 we suppose that a number of output dimensions for
low and high fidelity functions coincides and j-th output dimension of low fidelity data is a
coarse model for j-th output dimension of high fidelity data.

3.3 Black box for data fusion

Other workflow is used if black box for low fidelity model is available. In this case construction
of a model consists of two steps:

• First, we generate Design of experiment for low fidelity model and calculate low fidelity
function values at selected points. For the set of points generated we exclude points
with unavailable values of low fidelity function.

• Second, we use proper GT DF algorithm to build an approximation using both low
and high fidelity sets of points and corresponding function values.

Note that we use black box for evaluation of low fidelity model when calculating predic-
tions.

Another important issue to take into account is derivatives calculation. If blackbox func-
tion values are used for calculation of prediction for new input points and derivatives for low
fidelity model aren’t available we use numerical estimation of derivatives for black box low
fidelity model. So, for noisy and high frequency functions approximation numerical deriva-
tives can be inaccurate. In this case it is recommended to use some smoothing technique for
blackbox function to make it smoother.

3.3.1 Design of experiments

Design of experiments for the BB for DF component includes set of points Xh, some
additional input points are generated using GT DOE. Number of points Nl for low fidelity
model depends on size Nh of high fidelity model set. Dependency is depicted in figure 3.1.

6
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Figure 3.1: Size of low fidelity set of points Xl for Blackbox-based Data Fusion
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Chapter 4

Approximation techniques

4.1 General description of presented approximation tech-

niques

For GT DF three approximation techniques are presented:

• HighFidelityApprox (HFA) — approximation using only high fidelity data,

• DiffApprox (DA) — approximation is a sum of low fidelity data approximation and
difference between low and high fidelity data approximation,

• VariableFidelityGaussianProcess (VFGP) — approximation using multi-task
gaussian processes [1, 14] based approximation.

• Sparse VariableFidelityGaussianProcess (SVFGP) — approximation us-
ing multi-task gaussian processes [1,14] based approximation for large data sets based
on sparse gaussian processes [6, 15].

All presented techniques use GT Approx tool as a base approximator.

4.1.1 HighFidelityApprox

Short name: HFA

General description: In this case we ignore low fidelity data and use only high fidelity
data to build an approximator. So, we use pure GTApprox [8] to construct an approxima-
tion. The brief overview of GTApprox is given in Appendix B.

Strengths and weaknesses: This technique doesn’t take into account low fidelity data
and can be used if low fidelity data is weakly correlated with high fidelity data or amount
of available low fidelity data is small.

Restrictions: Can be used with all available modes from GTApprox.

Options: This technique has the same properties and use the same options from GTAp-
prox [8], see also Appendix B.3.

8



CHAPTER 4. APPROXIMATION TECHNIQUES

Detailed description: For this technique we use approximation techniques carefully de-
scribed in [8]. Available techniques and its’ options are described in Appendix B.

4.1.2 DiffApprox

Short name: DA

General description: The final approximation is a sum of two approximations given by
GTApprox approximators. First one reproduces low fidelity data, second one approximates
difference between high and low fidelity data.

Strengths and weaknesses: This technique makes a priory assumptions about link be-
tween low and high fidelity data. It is recommended to use this technique in case data
meets this assumptions, i.e. we can model high fidelity data as a sum of low fidelity data
approximation and difference between low and high fidelity data approximation. Strength
of this technique is it’s simplicity and reliability.

Restrictions: Can be used with all available modes from GTApprox. If proper GTAp-
prox technique is used AE and interpolation mode are available.

Options: This technique has the same properties and use the same options from GTAp-
prox, see Appendix B or [8]). Both GTApprox approximators, used for modeling of high
and low fidelity data, have the same options once specified by user for the DA technique.

Detailed description: For DA high fidelity function fh(X) is supposed to be a sum of low
fidelity function fl(X) and difference function fd(X). So, the model to use is

fh(X) = fl(X) + fd(X).

To build approximation we use the following method:

• Build an approximation f̂l(X) for the low fidelity model fl(X) using data Dl.

• Get values of the low fidelity model approximation f̂l(X) in points Xh
i from the sample

Dh.

• Calculate difference between the high fidelity model values fh(X) and the low fidelity
model approximation f̂l(X) in points Xh

i from the sample Dh:

fd(X
h
i ) = fh(X

h
i )− f̂l(Xh

i ), i = 1, 2, . . . , Nh.

• Build an approximation of difference between high and low fidelity models f̂d(X).

The final approximation f̂h(X) is a sum of two approximations:

f̂h(X) = f̂l(X) + f̂d(X).

To select the GTApprox techniques to apply we use decision tree from Chapter 5.

9



CHAPTER 4. APPROXIMATION TECHNIQUES

4.1.3 VariableFidelityGaussianProcess

Short name: VFGP

General description: VFGP is a gaussian-processes-based technique. It has a number of
advantages in comparison with other techniques [13]. VFGP uses both low and high fidelity
data to make prediction, i.e. it uses covariances between points from low fidelity data points
and high fidelity data points. VFGP inherits reliability and theoretical properties of gaussian-
processes-based regression from GTApprox. It means that AE and interpolation mode are
available for VFGP.

Strengths and weaknesses: The VFGP technique is the most powerful technique pre-
sented in GTDF. So, it is sufficiently general. It means that this technique handles more
complex links between high and low fidelity data.

Restrictions: If sample size Nl or Nh is large, this technique takes a log time, so it is
recommended to use other GTDF technique in this case.

Options: This technique has the same properties and use the same options from GTAp-
prox. See Appendix B or [8]. VFGP uses two gaussian processes approximators to construct
a final approximator. Both gaussian processes approximators use the same options once
specified by user for the VFGP approximator.

Detailed description: Detailed description of this technique requires more space and
more complex notation, so it is available in Appendix A.

4.1.4 SparseVariableFidelityGaussianProcess

Short name: SVFGP

General description: SVFGP is a gaussian-processes-based technique. This technique
expands applicability of gaussian-processes-based techniques to large data sets. Naturally,
this technique is based on VFGP, but can be applied to large sample sizes. So, one can
calculate AE values and use interpolation mode for SVFGP.

Strengths and weaknesses: The SVFGP shares most of the pros and cons for VFGP,
but can be applied to large data sets.

Options: This technique has the same properties and use the same options from GTAp-
prox. See Appendix B or [8]. SVFGP uses two gaussian processes approximators to construct
a final approximator. Both gaussian processes approximators use the same options specified
by user for the SVFGP approximator.

Detailed description: Detailed description of this technique is available in Appendix A.

10



CHAPTER 4. APPROXIMATION TECHNIQUES

4.2 General description of presented approximation tech-

niques for Blackbox-based Data Fusion

In case black box for low fidelity model is available, an approximation is constructed in two
steps:

• Create design of experiment for low fidelity model.

• Create approximation.

User can select a Design of Experiment technique for low fidelity data generation. Design
of experiment consists of two separate steps. At the first step we include to the learning
set for low fidelity data all points from Xh. At the second step we include a set of points
generated using GT DoE tool [9]. All options from GT DoE are available in GTDF. Then
we evaluate low fidelity black box for obtained design of experiment.

Two approximation techniques are available for BB DF:

• DiffApprox (DA) — approximation is a sum of low fidelity data approximation and
difference between low and high fidelity data approximation,

• VariableFidelityGaussianProcess (VFGP) — approximation using multi-task
gaussian processes [1, 14] based approximation.

Techniques are similar to the described above and use the same sets of available options.

4.3 Limitations

The restrictions for sample sizes Nl, Nh are imposed. They depends on input dimension
and internal validation options. Also restrictions vary on the base of technique selected. For
HighFidelityApprox and DiffApprox restrictions depend purely on internal valida-
tion options. If InternalValidation is off for HighFidelityApprox minimal high
fidelity sample size Nh is 1, minimal low fidelity sample size Nl is 0, because for this tech-
nique low fidelity sample isn’t used. If InternalValidation is off for DiffApprox
minimal high fidelity sample size Nh is 1, minimal low fidelity sample size Nl is also 1. For
VariableFidelityGaussianProcess and SparseVariableFidelityGaussianProcess
if Nh ≤ 2din + 2 or Nl ≤ 2din + 2, where din is input dimension of the data, an er-
ror with the corresponding error code will be returned. So, in such cases one should use
HighFidelityApprox or DiffApprox, however, surrogate model quality can be low
due to small sample sizes.

The maximum size of the training sample which can be processed by the tool is primarily
determined by the users hardware. Necessary hardware resources depend significantly on
the specific technique. See descriptions of individual techniques.
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Chapter 5

Selection of approximation technique

GTDF tool allows automatic technique selection. However, user can select technique man-
ually by setting option Technique.

5.1 Manual selection

The user may specify the approximation technique by setting the option GTDF/Technique,
which may have the following values:

• Auto — best algorithm will be determined automatically,

• HFA — High Fidelity Approx algorithm will be used,

• DA — Difference Approximation algorithm will be used,

• VFGP — Variable Fidelity Gaussian Process algorithm will be used.

• SVFGP — Sparse Variable Fidelity Gaussian Process algorithm will be used.

5.2 Automatic selection

Automatic technique selection is affected by:

• high-fidelity sample size Nh,

• low-fidelity sample size Nl, and

• the state of AE switch (is Accuracy Evaluation required or not).

Selection rules are summarized below (note also that if Internal Validation is required, it
affects sample size thresholds).

• If Nh ≤ 2din + 2, and a low-fidelity sample is available (Nl > 0), DA is selected; else if
Nl = 0, the tool selects HFA. In both cases AE and ExactFit are not available, and
setting any of these requirements leads to an error: Nh is too low to provide AE or
exact fit.

12



CHAPTER 5. SELECTION OF APPROXIMATION TECHNIQUE

• If Nh > 2din + 2, but Nl/Nh < 1.2, the tool uses HFA since the low-fidelity sample
size is not enough to build a required low-fidelity approximation model. To select
approximation technique for HFA we use decision tree from GTApprox (See Appendix
C and figure C.2).

• If both Nh > 2din + 2 and Nl/Nh ≥ 1.2, technique selection further depends on sample
sizes:

– If both Nh and Nl are less than 1000, VFGP is selected.

– If either of Nh, Nl is more than 1000, and AE is not required, the tool selects DA,
and an approximation technique is selected following the GTApprox decision
tree (decisions are based on the maximum value from Nh, Nl). In the same case
but with AE required, the tool always selects SVFGP.

The logic of automatic technique selection is also shown on Figure 5.1.

5.3 Automatic selection for black box GTDF

In case black box is available for low fidelity model, the decision is based only on the size
Nh of high fidelity model set of points.

Design of experiments for the BB DF includes all points from the set Xh. Additional
input points are generated by GT DOE. For all obtained points Xl low fidelity outputs are
calculated. Number Nl of points for low fidelity model Xl depends on size Nh of high fidelity
data set. Dependency is depicted in figure 3.1. Number of additional points to generate is
equal Nl − Nh. Note, that tool proceeds the case when blackbox return not only numbers
but can return NaN or Inf for points from some region.

To select approximation algorithm the following procedure is used.

• If N true
l = 0 tool returns an error because blackbox can’t produce acceptable values.

• If 2din + 2 ≥ N true
l > 0 or 2din + 2 ≥ Nh > 0 tool checks for AE and ExactFit

requirements. If AE or ExactFit is required tool returns an error because it can’t
provide AE and ExactFit with produced low fidelity sample. If user doesn’t require
AE and ExactFit DA for BB technique is used.

• If both Nh and N true
l are greater than 2din + 2 we check for high fidelity sample size

– If Nh ≤ 1000 then we use VFGP for BB technique.

– If Nh > 1000 then we use DA for BB technique. In this case ExactFit isn’t
available.

The procedure described above is presented in figure 5.2.
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Figure 5.1: Decision tree for GTDF
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Figure 5.2: Decision tree for GTDF for BB available
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Chapter 6

User configurable options

In some cases, it is desirable to adjust the type or properties of the approximation accord-
ing to the prior domain–specific knowledge of the problem or specific requirements to the
approximation. GTDF supports several special approximation modes which can be useful
in some applications. To set GTDF options the user has to set an option OptionName
like GTDF/OptionName, to set options for GTApprox approximator, which is used inside
GTDF, the user has to set GTApprox/OptionName.

6.1 Interpolation mode

The interpolating mode can be set by the option InterpolationRequired (default value
is off). If this switch is turned on, then the constructed approximation will go through the
high fidelity sample points. If the switch is off, then no interpolation condition is imposed,
and the approximation can be either interpolating or non-interpolating depending on which
fits the training data best.

The interpolating mode is computationally demanding and therefore restricted to mod-
erately sized training samples. GT DF provides interpolation in case proper DF technique
and approximation technique from GTApprox are used (note, that only GP, SGP and
HDAGP can be used in interpolating mode, it is not supported by HDA, 1D Splines and
LR, see Appendix B.3).

The following guidelines are important in choosing whether to switch the strict interpo-
lation mode on or off:

• If the approximation has a low error on the training sample (in particular, if it is a
strict interpolation), it does not mean that this approximation will be just as accurate
outside of the training sample. Very often (though not always), requiring an excessively
small error on the training sample leads to an excessively complex approximation
with low predictive power – a phenomenon known as overtraining or overfitting (see,
e.g., [12, 24]). If the strict interpolation mode is off, GTDF attempts to avoid
overtraining.

• The interpolation mode is inappropriate for noisy models. Also, if the training sample
is highly irregular or the approximated function is known to be singular, then the
interpolation mode is not recommended, as in this case the approximation tends to be
numerically unstable. On the whole, strictly interpolating approximations are more
flexible but less robust than non-interpolating ones.
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• The interpolation mode may be useful, e.g., if the default approximation (with the in-
terpolation mode off) appears to be too crude. In this case, turning the interpolation
mode on may (but is not guaranteed to; the opposite effect is also possible) increase
the accuracy.

Because of numerical limitations and round-off errors, minor discrepancies can be observed
in some cases between the training sets and the interpolating approximations constructed
by GTDF. These discrepancies typically have relative values . 10−5 and are considered
negligible.

A script named interpolationExample.py which demonstrates a difference between
interpolation and approximation mode is presented in the supporting materials.

6.2 Compensating low fidelity function bias

This options is dedicated to handle important special case of low fidelity function. We
suppose that the low fidelity function has a bias with respect to the high fidelity function.
Namely there exists a vector S such that it holds

fl(X) ≈ fh(X + S)

for X in the design space X.
If one knows from a subject domain about existence of such a peculiarity in the data then

one should turn GTDF/UnbiasLowFidelityModel option ’on’, otherwise one should
turn GTDF/UnbiasLowFidelityModel option ’off’. If this options is ’on’ the tool
tries to compensate bias for low fidelity model. As HFA doesn’t use low fidelity data this
technique ignores the option GTDF/UnbiasLowFidelityModel value. Default value for
this option is ’off’. For demonstration of this option usage see subsection 7.1.3.

6.3 Componentwise training of the approximation

In case of the multidimensional output of the response function (dout > 1), there are, in
general, two modes to construct the approximation:

1. Jointly for all scalar components of the output;

2. Separately for each scalar component of the output.

The choice of the mode is regulated by the option Componentwise . The default value of
this option is off, i.e. the first mode is used. On the whole, the differences between the
two modes are:

• the joint mode is faster;

• the joint mode attempts to take into account the possible dependency between different
components of the output (e.g., this is so if different components of the output describe
values of a smooth process at different time instances or describe different points on
some family of curves or surfaces depending on some parameters);

• the total approximation obtained with the joint mode may have (but not always does)
a lower overall accuracy than the set of separately obtained approximations for each
component.
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In some cases, however, changing the mode may have no or very little effect on the approx-
imation.

6.4 Control over training time and accuracy of approx-

imation

As GTDF normally constructs approximations by complex nonlinear techniques, this pro-
cess may take a while. In general, the quality of the model trained by GTDF is positively
correlated with the time spent to train it. GTDF contains a number of parameters affect-
ing this time. The default values of the parameters are selected so as to reasonably balance
the training time with the accuracy of the model, but in some cases it may be desirable to
adjust them so as to decrease the training time at the cost of decreasing the accuracy, or
increase the accuracy at the cost of increasing the training time. All available techniques
with similar options works nearly equal time. Only HFA doesn’t use low fidelity data and
works faster because of this reason. Therefore, GTDF has a special option Accelerator
which allows the user to tune the training time by simply choosing the level from 1 to 5;
the detailed specific options of the approximation techniques are then set to pre-determined
values. Increasing the value of Accelerator reduces the training time and, in general,
lowers the accuracy. In general parameter Accelerator of GTDF works like the same
parameter of GTApprox.

Some recommendations for selection technique inside GTApprox for training are given
below.

• The fastest approximation algorithms of GTApprox are, by far, SPLT and LR (see
Appendix B.3). They have, however, a limited applicability: SPLT is exclusively for
1D, and LR is too crude in many cases.

• The only nonlinear approximation algorithm effectively available in GTApprox for
very large training sets (larger than 1000) in dimensions higher than 1 is HDA. This
algorithm can be quite slow on very large training sets, but it has several options which
can be adjusted to decrease the training time. See Appendix B.3.3 for details.

6.5 Accuracy evaluation

Accuracy Evaluation (AE) is a part of GTDF whose purpose is to estimate the accuracy of
the constructed approximation at different points of the design space. If AE is turned on,
then the constructed model contains, in addition to the approximation f̂h : Rdin → Rdout ,
the AE prediction σ : Rdin → Rdout

+ .
AE is turned on or off by the option AccuracyEvaluation (default value is off).

AE prediction is performed separately for each of the dout scalar outputs of the response.
Let us make four additional notes about AE:

• The AE prediction is only an “educated guess” of approximation’s error. It is not
possible, in general, to predict the exact values of the error.

• The AE prediction is usually more efficient in terms of the correlation with the actual
approximation errors rather than reproduction of these errors.
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• If the approximation f̂h is interpolating, then at the high fidelity train points Xh
i from

Dh holds σ(Xh
i ) ≈ 0;

• AE is available in GTApprox for the following approximation techniques: SPLT, GP,
HDAGP (see Appendix B.3), used in DF procedures.

Other useful information about AE can be found in the manual for GTApprox [8].
We provide a python script which demonstrates accuracy estimation for a simple one-

dimensional function in the script aeExample.py.

6.6 Internal validation

The Internal Validation (IV) procedure is an optional part of GTDF providing an estimate
of the expected overall accuracy of the approximation algorithm on the user–supplied training
data. This estimate is obtained by a (generalized) cross–validation of the algorithm on the
training data.

The result of this procedure is a table with errors of several types, written to the log file
and to the constructed model’s info file.

The procedure can be turned on/off by the option InternalValidation (the de-
fault value is off).

The procedure depends on the following parameters which can be set up through the
advanced options of GTDF:

• The number Nss of subsets that the original training set Dh is divided into, where
2 ≤ Nss ≤ |Nh|. This number is set by the option IVSubsetCount.

• The number Ntr of training/validation sessions, where 1 ≤ Ntr ≤ Nss. This number is
set by the option IVTrainingCount.

• The seed for the pseudo–random division of Dh into subsets. This seed is set by the
option IVRandomSeed.

• GTDF/IVSavePredictions allows one to save predictions obtained during Internal
Validation. If this options is on, one can get information about predicted outputs and
true outputs for points used in test samples during IV. For example, now one can pro-
duce scatter plots with IV results. See description of option GApprox/IVSavePredictions
in GTApprox user manual for more details.

The default values of the parameters Nss, Ntr are given by

Nss = min(10, |Nh|),

Ntr =

⌈
min

(
|Nh|,

100

|Nh|

)⌉
,

(6.1)

where dae denotes the smallest integer not less than a.
The Internal Validation accompanies the construction of the approximation. If IV is

turned on, the model construction procedure includes the following steps:

1. From the options’ values and the properties of the training sets Dl, Dh, the tool
determines the appropriate approximation algorithm A to be used when constructing
the main approximation f provided to the user.
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2. After that, the tool starts the Internal Validation of the algorithm A on the sample
Dh.

(a) The set Dh is randomly divided into Nss disjoint subsets (Dk)
Nss
k=1 of approximately

equal size.

(b) For each k = 1, . . . , Ntr, an A-based approximation fk is trained on the subset
Dh \ Dk and the whole set Dl, and its errors Ek,m of one of the three standard
types, MAE, RMS and RRMS (see below) are computed on the complementary
test subsetDk, separately for each scalar componentm = 1, . . . , dout of the output.

(c) The cross–validation errors (Ecv
m )doutm=1 are computed as the median values of the

errors Ek,m over the training/validation iterations k = 1, . . . , Ntr.

(d) The total cross–validation errors Ecv
mean, E

cv
rms, E

cv
max are computed as the mean,

root-mean-squared or maximum values, respectively, of the cross–validation errors
(Ecv

m )doutm=1 over the output components m = 1, . . . , dout.

3. The obtained errors (Ecv
m )doutm=1 and Ecv

mean, E
cv
rms, E

cv
max, where E is MAE, RMS or RRMS,

are written to the log file.

4. Finally, the main approximation f is trained using all the training data Dh and Dl

and saved in the constructed model.

In GTDF, the following types of errors are computed during Internal Validation:

• Mean absolute error,

MAEk,m =
1

|Dk|
∑

(X,fh(X))∈Dk

∣∣f (m)
k (X)− f (m)

h (X)
∣∣,

where f
(m)
h (X) is the m’th output component of the training point (X, fh(X)).

• Root-mean-squared error,

RMSk,m =

(
1

|Dk|
∑

(X,fh(X))∈Dk

∣∣f (m)
k (X)− f (m)

h (X)
∣∣2)1/2

• Relative root-mean-squared error,

RRMSk,m =

(
1
|Dk|

∑
(X,fh(X))∈Dk

∣∣f (m)
k (X)− f (m)

h (X)
∣∣2)1/2(

1
|Dk|

∑
(X,fh(X))∈Dk

∣∣∣f (m)
h (X)

Dh\Dk

− f (m)
h (X)

∣∣∣2)1/2 , (6.2)

where f
(m)
h (X)

Dh\Dk

is the mean of f
(m)
h (X) on the training subset Dh \Dk.
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Usage examples

To demonstrate a way of using GTDF we present a number of examples. This chapter
contains both artificial and real data examples. Four methods, described in chapters 4 and
appendix A, are considered:

• HFA — we use only high fidelity data to build an approximation,

• DA — approximation is a sum of low fidelity data approximation and difference between
low and high fidelity data approximation,

• VFGP — we use variable fidelity gaussian process approximation.

• SVFGP — we use variable fidelity gaussian process approximation.

To compare available GTDF techniques different approximation quality measures are
used. They are calculated on a test sample of high fidelity function valuesDt = {fh(Xi), Xi}Nt

i=1,
which we don’t use during an approximation building. We measure mean average error
MAE, mean square error MSE, max error MAX, 95%-quantile of errors Q95 and 99%-
quantile of errors Q99.

MSE(f̂(X)) =
1

Nt

Nt∑
i=1

(fi − f̂i)2,

MAE(f̂(X)) =
1

Nt

Nt∑
i=1

|fi − f̂i|,

MAX(f̂(X)) = max
i=1,...,Nt

|fi − f̂i|,

(7.1)

where f̂i = f̂(Xi) is an approximation given by the corresponding GTDF model, fi =
f(Xi) is a high fidelity function value. To get Q95, Q99 we calculate 95% and 99% quantiles
for the set of errors for test sample {|fi − f̂i|}Nt

i=1. Quantiles make sense only if test sample
size is bigger than 20, so if test sample size is smaller than 20 we don’t include them because
both quantiles would coincide with MAX error in this case.

7.1 Artificial example

Functions used for data generation are presented in table 7.1.
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High fidelity function fh(X) Low fidelity function fl(X)

|
∑m

i=1 cos4(xi)− 2
∏m

i=1 cos2(xi)| (
∑m

i=1 ix
2
i )
−1
2 fh(X) exp

[
−1

2

∑m
i=1

(xi−5)2
σ2

]
+ s

Table 7.1: Model function

For the low fidelity function fl parameter σ equals 4, parameter s equals 0.1. Input
dimension m = din equals 2. We use design space xi ∈ (0, 10), i = 1, 2 to generate learning
sample and test sample. Low and high fidelity functions are plotted in figure 7.8. To
compare different techniques we calculate MSE error (7.1). We varied size of high fidelity
data and low fidelity data and calculate errors for 20 random sets of points in the design
space. Dependence of MSE error on the low and high fidelity sample sizes for different
techniques are presented in figure 7.9. One can see, that increasing both low and high
fidelity data samples decreases MSE error. Also, techniques DA, VFGP that use both low
and high fidelity samples work better than HFA that uses only high fidelity data.

7.1.1 Sparse variable fidelity gaussian processes

We demonstrate application of SVFGP technique in the following experiment. We use Rast-
rigin function as a high fidelity function:

fh(X) = 20 +
2∑
i=1

(
x2i − 10 cos(2πxi)

)
.

A low fidelity function is

fl(X) = fh(X) + 0.2
2∑
i=1

(
x̃i
c

+ 1

)2

,

where x̃i = xi
10.28

+ 0.5. We generate points for low and high fidelity sets from uniform
distribution on [−5.12, 5.12]2. The experiment workflow is:

• Generate a set of high fidelity points with size Nh = 100.

• Generate a set of low fidelity points with size N full
l = 2000.

• Select a subset from full low fidelity set of points with sizeNl ∈ {1000, 1050, 1100, . . . , 2000}.

• Get MSE for each pair of sets of low and high fidelity points while using SVFGP
technique.

• Get MSE for the first one thousand points of low fidelity set while using VFGP tech-
nique.

• Get MSE for all available points while using VFGP technique.

The results are presented in figure 7.1. One can see, that we obtain more accurate
approximation using SVFGP than using VFGP, however, in case we use all available points to
build VFGP model the results are much better. To compare training time for each method we
plot figure 7.2. Again, we compare learning time for full sample VFGP, small sample VFGP
and full sample SVFGP. One can see, that we don’t increase learning time using SVFGP, but
for full sample VFGP learning time growth is cubic in sample size.
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Figure 7.1: Comparison of SVFGP and VFGP approximation error. Note: This image was
obtained using an older pSeven Core version. Actual results in the current version may differ.
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Figure 7.2: Comparison of SVFGP and VFGP learning time. Note: This image was obtained
using an older pSeven Core version. Actual results in the current version may differ.

7.1.2 Blackbox-based variable fidelity gaussian processes

Here we demonstrate application of Blackbox-based Variable Fidelity Gaussian Processes
technique on basis of some artificial problem. Varying level of fidelity for low fidelity function
we compare results for different fidelities. We use Rastrigin function as a high fidelity
function:

fh(X) = 20 +
2∑
i=1

(
x2i − 10 cos(2πxi)

)
.

A low fidelity function is

fl(X) = fh(X)(0.8 + 0.1(x̃1 + x̃2)) + c

2∑
i=1

sin(x̃2i ) + ε,

where x̃i = xi
10.28

+0.5, ε is a standard normal variable, ε ∼ N (0, 1), c is our fidelity coefficient.
If c is small low and high fidelity functions slightly differ from each other. If c is large low
and high fidelity functions significantly differ from each other.
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We use Nh = 20, i.e. Nl = 100 according to the dependency presented in figure 3.1. The
results is plotted in figure 7.3. We see, that if low and high fidelity functions are close enough,
blackbox usage dramatically improves approximation quality, but difference vanishes if low
fidelity function doesn’t provide information about high fidelity function.
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Figure 7.3: Comparison of VFGP and blackbox-based VFGP. Note: This image was obtained
using an older pSeven Core version. Actual results in the current version may differ.

7.1.3 Compensating low fidelity function bias

To demonstrate how GTDF tool can handle low fidelity model bias we provide a simple
one-dimensional example. In this case high and low fidelity functions are:

fh(x) = (x2 + 1) sin(15x2),

fl(x) = fh(x− s),

where s is a bias value.
We vary bias value to compare behaviour of GTDF with and without compensation of

the low fidelity function bias option used. Sample size for the high fidelity function equals 12,
sample size for the low fidelity function equals 50. High fidelity sample points were equally
spaced on the interval [0, 1.5]. Low fidelity sample points were selected from the uniform dis-
tribution on [0, 2]. For surrogate model construction for GTDF/UnbiasLowFidelityModel
option turned ’on’ and ’off’ we use Difference approximation (DA) technique from
GTDF.

Obtained approximations are depicted in figures 7.4. One can see that as we can handle
bias for low fidelity function during approximation we obtain more precise surrogate models.
Moreover, with samples of such size bias values estimations are close to the true bias values.
See also script lowFidelityBiasCompenstationExample.py in additional materials
for more details.
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(a) Bias s equals 0
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(b) Bias s equals 0.2
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(c) Bias s equals 0.4
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(d) Bias s equals 0.6

Figure 7.4: Compensating low fidelity function bias using GTDF/UnbiasLowFidelityModel
option

7.2 Real data examples

7.2.1 Modelling aerodynamic lift and drag coefficients for a fixed
airfoil

This experiment demonstrates a number of DF techniques applications to modeling aerody-
namic lift coefficient Cl and drag coefficient Cd of a fixed airfoil as a function of one variable
— angle of attack α. For experiment we fix Mach number Ma = 0.8.

Design domain contains α from [−2◦, 3◦]. Two experiments were made. For the first
experiment we used Euler solver with a high precision mesh as a high fidelity model and
Full-potential solver as a low fidelity model. For the second experiment we used Euler solver
with a high precision mesh as a high fidelity model and Euler solver with a low precision
mesh as a low fidelity model. The mesh for the high fidelity model was significantly denser
than the mesh for the low fidelity model. So, for the first experiment we use two different
solvers to get lift and drag coefficients, for the second experiment we use one solver, but
apply it to different meshes. We make 200 runs of the low fidelity model and 30 runs of the
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Low fidelity data MSE ·105 for Cd MSE ·106 for Cl
model HFA DA VFGP HFA DA VFGP

Full-potential solver
4.21

83.30 4.51
1.52

2.41 1.88
Euler solver 3.80 1.00 1.01 1.18

Table 7.2: MSE for Airfoil problem. For convenience we multiply errors of Cd approximation by
factor 105 and errors of Cl approximation by factor 106.

high fidelity model, angle of attack α was distributed uniformly in the design domain.
To verify proposed DF technique we split sample of the high fidelity model values to train

and test several times. Train sample contains 10 points and test sample contains 20 points
from the high fidelity model values. Train sample contains 120 points from the low fidelity
model values. Each time we split sample we calculate errors (7.1) for a test sample. Than
for all splittings we get mean errors. Results are presented in table 7.2. We see, that in case
we use Full-potential solver as a low fidelity model, we can’t improve results obtained using
only high fidelity data. However, in case we use Euler solver as a low fidelity model, we do
improve results obtained using only high fidelity data.

Examples of obtained approximations for Cd are presented in picture 7.5 (high fidelity
data sample size equals 5). For the first experiment the dependency obtained using Full-
potential solver significantly differs for the dependency obtained using Euler solver. So, we
can’t improve our approximation of drag coefficient using low fidelity data from the Full-
potential solver. For the second experiment approximation quality significantly improves in
case we use additional data from the Euler solver with low precision mesh. So, one should
use precise enough low fidelity functions to improve approximation using DF techniques.
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(a) Full-potential solver as low fidelity model
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(b) Coarse mesh for Euler solver as low fidelity model

Figure 7.5: Drag coefficient Cd approximation. Note: This image was obtained using an older
pSeven Core version. Actual results in the current version may differ.

7.2.2 Modelling aerodynamic lift and drag coefficients

We approximate airfoil lift Cl and drag Cd coefficients. As high and low fidelity function we
use tight and coarse meshes correspondingly for Euler equations solving.
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GP SGP VFGP SVFGP
Cl 0.1671 0.0826 0.1284 0.0788
Cd 0.0114 0.0068 0.0084 0.0050

Table 7.3: Averaged approximation MSE for control sample

A usual airfoil parametrization specifies ordinates for a fixed set of absciss points, see
figure 7.6 Typically, dimensionality of such a parametrization is about 59. Two problems
rises in case we deal with this parametrization [3]. The first one is there is difficult to
obtain new suitable airfoil using this parametrization. The second one is dramatic number
of algorithm parameters which is proportional to problem dimensionality.

Figure 7.6: Airfoil parametrization

Both problems can be solved using dimension reduction technique. To get input variables
X of dimension 12 we compress a depicted parametrization using PCA [18] and add angle
of attack α to the list of variables. To build PCA dimension reduction model we use a set
of 208 airfoils.

For this parametrization we calculate high fidelity function values for 400 and low fi-
delity function values for 200 airfoils. To estimate approximation performance we use cross-
validation approach. We split the whole set of high fidelity points to learning set of size 350
and control set of size 50. To learn model we use learning set of high fidelity points and
the whole set of low fidelity points. Remaining control set we use to estimate techniques
performance on independent set of points.

To learn GP and VFGP models we use only 100 high fidelity points; to learn Sparse
gaussian processes SGP and Sparse variable fidelity gaussian processes SVFGP models we
use 350 high fidelity points. Obtained results are presented in table 7.3. We mention two
conclusions of this examples:

• by incorporating low fidelity data into model learning we increase approximation qual-
ity,

• sparse techniques increase performance with no additional time cost.
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7.2.3 Designing linear cellular alloys

Data of designing linear cellular alloys processes was presented in [20]. Data consists of
the output from computer simulations for a heat exchanger used in an electronic cooling
application. The response f(X) is the total rate of steady state heat transfer of the device,
which depends on a number of parameters. High fidelity data was obtained using slow
simulation based on FLUENT finite element analysis. Low fidelity data was obtained using
finite difference method. Evaluation of one point of high fidelity data is about two or three
order of magnitude slower than evaluation of one point of low fidelity data.

Total number of available points was 36. To learn model we use 22 randomly points, to
test — remaining 14 points of high fidelity data set. To learn model we use the whole low
fidelity data set. Learning sample was randomly selected 100 times from the whole learning
set to make error estimation more accurate. For each learning sample we run approximation
building and estimate errors using test sample. Then we estimate mean and max errors for
a given set of runs. Mean errors are presented in table 7.4. Max errors are presented in table
7.5. We significantly increase quality using VFGP. Both mean and max errors for VFGP are
significantly better in comparison to HighFidelityApprox and DiffApprox.

Algorithm MAE MSE MAX
HFA 1.8967 9.0097 7.0559
DA 1.4915 6.4871 6.5692
VFGP 1.3630 5.7837 6.4232

Table 7.4: Designing linear cellular alloys problem. Mean errors

Algorithm MAE MSE MAX
HFA 4.641 119.63 39.641
DA 2.974 22.463 16.20
VFGP 2.3253 15.126 11.077

Table 7.5: Designing linear cellular alloys problem. Max errors

7.2.4 Fluidized Bed Process Experimental data

Dewettinck [11] proposed several associated computer models for predicting the steady-state
thermodynamic operation point of a GlattGPC-1 fluidized-bed unit. The base of the unit
consists of a screen and an air jump, with coating sprayers at the side of the unit. Data
is available in [20]. Eight variables can potentially affect the steady-state thermodynamic
operating point. Dewettinck fixed two of them.

So, the problem contains 28 points and 6 input variables. We fix the high fidelity learning
sample size for the Fluidized Bed Process Experiment data to 16, remaining points were used
for testing. Learning sample was randomly selected 100 times from the whole learning set
to make error estimation more precise. The results are given in tables 7.6 and 7.7 for mean
and max errors for all set of runs.

We get better results using both high fidelity and low fidelity data. Difference between
DA and VFGP isn’t significant, but max errors for VFGP are smaller.

We can increase performance in case we use BB VFGP technique to incorporate low
fidelity values for test set. Dependence of mean square error with respect to learning set
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size is depicted in figure 7.7. We see that BB VFGP is the best choice for approximation
building, however, difference between approximations quality becomes negligible in case we
increase learning set size.

Algorithm MAE MSE MAX
HFA 2.786 23.341 7.3424
DA 0.56467 0.80285 2.0958
VFGP 0.47338 0.65715 1.9761

Table 7.6: Fluidized Bed Process Experiment. Mean errors

Algorithm MAE MSE MAX
HFA 7.2832 86.722 17.518
DA 1.1865 3.9993 5.6077
VFGP 1.1891 2.1394 3.9223

Table 7.7: Fluidized Bed Process Experiment. Max errors
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Figure 7.7: Fluidized Bed Process Experiment. Dependence with respect to sample size
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(a) Low fidelity function fl(X) (b) High fidelity function fh(X)

Figure 7.8: Model function
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(a) High fidelity approximation
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(b) Difference approximation

10 20 30 40 50
10

20

30

40

50

60

70

80

90

100  

High fidelity sample size

 

L
o
w

fi
d
el
it
y
sa
m
p
le

si
ze

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Variable fidelity gaussian processes

Figure 7.9: Corresponding model function approximation errors. Colour of each square corre-
sponds to the error value in the square vertex. Dark blue colour corresponds to the low MSE
errors. Red colour corresponds to the high MSE errors.
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Appendix A

Variable fidelity gaussian processes

Variable fidelity gaussian processes (VFGP) technique is based on gaussian processes [1,
14, 26]. To learn gaussian processes for VFGP we use algorithm described in [8] and [4, 5].
Any GP f(X) is fully determined by its’ mean functions m(X) = E[f(X)] and covariance
functions cov(f(X), f(X ′)) = k(X,X ′) = E[(f(X) −m(X))(f(X ′) −m(X ′))]. In the next
section VFGP based approximation approach is described.

A.1 Used class of GPs

It is assumed that training data consists of two samples Dl = (Yl,Xl) = {(fl(X l
i), X

l
i)}

Nl
i=1,

Dh = (Yh,Xh) = {(fh(Xh
i ), Xh

i )}Nh
i=1. The sample (Yl,Xl) corresponds to a low fidelity

function, the sample (Yh,Xh) corresponds to a high function function. The following model
is assumed:

Y l
i = Y l(Xi) = fl(Xi) + εli, i = 1, 2, . . . , Nl,

Y h
i = Y h(Xi) = ρ(fl(Xi) + εli) + fd(Xi) + εdi , i = 1, 2, . . . , Nh,

where fl(Xi) and fd(Xi) are independent gaussian processes and the independent noise
terms εl and εd are modelled by gaussian white noises with zero mean and variance σ2

l

and σ2
d correspondingly. By fh(X) denote the high fidelity function values ρfl(X) + fd(X)

without noise. GP based regression is interpolating, when it is assumed no noise, therefore
interpolation regime of VFGP is realized by setting both σ2

l ≈ 0 and σ2
d ≈ 0. Parameter ρ

refers to the link between low fidelity and high fidelity models.
For each of GP fl(X), fd(X) we make the same assumptions. Let us describe these

assumptions using some GP f(X) as example. It is assumed that GP f(X) has zero mean
function m(X) = E[f(X)] = 0 and covariance function k(X,X ′), belonging to some para-
metric class of covariance functions k(X,X ′|a), where a is a vector of unknown parameters.
The following two classes of covariance functions are considered, namely squared exponential
covariance function

k(X,X ′|a) = σ2 exp

(
−

din∑
i=1

θ2i (xi − x′i)s
)
, s ∈ [1, 2], (A.1)

where parameters a = {σ, θi, i = 1, . . . , din}, and Mahalanobis covariance function

k(X,X ′|a) = σ2 exp
(
−(X −X ′)TA(X −X ′)

)
, (A.2)
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where A ∈ Rdin×din is a positive definite matrix and parameters a = {σ,A}.
Under such assumptions the data from samples (Xl,Yl), (Xh,Yh) is modelled using two

GPs with zero mean and covariance functions

cl(X,X
′) = cov(Y l(X), Y l(X ′)) = µl(kl(X,X

′) + σ2
l δ(X −X ′)),

cd(X,X
′) = cov(Y d(X), Y d(X ′)) = µd(kd(X,X

′) + σ2
dδ(X −X ′)),

where δ(X) is a delta function. Using this covariances we can write covariances between
high and low fidelity points:

cov(Y h(X), Y l(X ′)) = ρµl(kl(X,X
′) + σ2

l δ(X −X ′)),
cov(Y h(X), Y h(X ′)) = ρ2µl(kl(X,X

′) + σ2
l δ(X −X ′)) + µd(kd(X,X

′) + σ2
dδ(X −X ′)).

Thus, a posteriori (with respect to the given training sample) mean value of the process for
some test point X for the high fidelity function fh(X) takes the form

f̂h(X) = k(X)K−1Y, (A.3)

where

k(X) =

(
ρKl(X,Xl)

ρ2Kl(X,Xh) +Kd(X,Xh)

)
, (A.4)

matrix K is constructed using four submatrices:

K = K(X) =

(
Kl(Xl,Xl) ρKl(Xl,Xh)
ρKl(Xh,Xl) ρ2Kl(Xh,Xh) +Kd(Xh,Xh)

)
,

matrix Y is the concatenation of two matrices:

Y =

(
Yl

Yh

)
.

In this notation Kl(X,X
′) is a matrix of pairwise covariances:

Kl(X,X
′) = {cl(Xi, X

′
j)}i=1...|X|,j=1...|X′|,

where |X| is a number of rows in the matrix X. Similarly, Kd(X,X
′) is a matrix of pairwise

covariances
Kd(X,X

′) = {cd(Xi, X
′
j)}i=1...|X|,j=1...|X′|,

where |X| is a number of rows in the matrix X. So, A.3 is a posteriori mean value which we
use for prediction.

A posteriori (with respect to the given training sample) variance function for some test
point X takes the form

V
[
f̂h(X)

]
= ρ2µl(kl(X,X) + σ2

l ) + µd(kd(X,X) + σ2
d)− k(X)TK−1k(X). (A.5)

Squared root of a posteriori variance is used as an accuracy evaluation of the prediction,
given by a posteriori mean value.

In matrix notation equations for expectation of gaussian process are

f̂h(X
∗) = K(X∗,X)K−1Y, (A.6)
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where K(X∗,X) is matrix of covariances between points from samples X∗ and X and is
concatenation of N∗ vectors (A.4):

K(X∗,X) =
(
k(X∗1 ), k(X∗2 ), · · · , k(X∗N∗)

)
.

Variance takes the form:

V
[
f̂h(X

∗)
]

= ρ2µl(kl(X,X) + σ2
l ) + µd(kd(X,X) + σ2

d)− diag
(
K(X∗)TK−1K(X∗)

)
, (A.7)

where kl(X,X), kd(X,X) don’t depend on X for used covariance functions, diag is a diagonal
elements vector of a matrix.

When processing real data, parameters of covariance function are not known, so special
tuning algorithm, described in the next section, was elaborated for their estimation.

A.2 Tuning of covariance function parameters

Parameters a of covariance function (A.1) or (A.2) are estimated using the training sample
by maximizing the logarithm of corresponding likelihood, which takes the form [4,19,21]:

log p(Y|X, a, µ, σ̃) = − 1

2µ
YTK−1Y − 1

2
log |K| − |Y|

2
(log µ+ log 2π),

where |K| is a determinant of covariance matrix K for the sample considered, |Y| is a number
of rows in Y, µ is corresponding magnitude. Besides parameters a of covariance function
noise variance σ2

l , σ
2
d is estimated as well by the solution of the following optimization problem

log p(Y|X, a, σ)→ max
a,σ

. (A.8)

For obtaining robust and well-conditioned solution of the optimization problem (A.8) special
bayesian regularization algorithm was elaborated [19].

To estimate hyperparameters of covariance function cov(Y l(X), Y l(X ′)) we solve (A.8)
for sample (Xl,Yl). To estimate hyperparameters of covariance function cov(Y d(X), Y d(X ′))
we use the following algorithm:

• Get values of difference between high and low fidelity models: Y d(X) = Y h(X) −
ρY l(X) for some initial value of ρ.

• Calculate likelihood for the data Yd, using hyperparameters of covariance function
cov(Y d(X), Y d(X ′)).

• Get derivatives with respect to hyperparameters and parameter ρ.

• Make new step of the optimization algorithm using new values for hyperparameters of
covariance function cov(Y d(X), Y d(X ′)) and ρ, etc.

A.3 Sparse gaussian processes

For sparse variable fidelity gaussian process it is supposed that the size of low fidelity Nl or
high fidelity data Nh is large and inversion of covariance matrix K is impossible or can take
a large amount of time. So, it is proposed to approximate inversion of covariance matrix K.
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Suppose, that small enough subsamples D1
l = (Y1

l ,X
1
l ) = {(fl(X l1

i ), X l1
i )}N

1
l

i=1, D
1
h =

(Y1
h,X

1
h) = {(fh(Xh1

i ), Xh1
i )}N

1
h

i=1 are selected from the full samples Dl, Dh. Sample X1 =
X1

l

X1
h

We select arbitrary subsets thatN1
l ≤ 1000, N1

h ≤ 1000. For these subsets we apply algorithm
(A.2) to get hyperparameters, so we now can calculate cl(X1, X2), ch(X1, X2).

Let’s replace matrices K(X,X), K(X∗,X), K(X∗) by their approximations:

K(X,X) ≈ K(X,X1)K(X1)
−1K(X1,X),

K(X∗,X) ≈ K(X∗,X1)K(X1)
−1K(X1,X),

K(X∗) ≈ K(X∗,X1)K(X1)
−1K(X1,X

∗).

where K(X∗,X) is a matrix of covariances between points from samples X∗ and X and is
concatenation of n∗ vectors:

K(X∗,X) =
(
k(X∗1 ) k(X∗2 ) · · · k(X∗N∗)

)
,

matrix K(X∗) is a matrix of pairwise covariances for the test sample. Denote by R matrix
of inverse roots of noise variances for each point from learning set:

R =

 1√
µlσ

2
l

INl
0

0 1√
ρ2µlσ

2
l +µdσ

2
d

INh


Denote by K̃(X,X1) the matrix K(X,X1)R.

To improve numerical stability and computational time a method from the article [15]
was used. This method is based on cholesky decompositions of covariance matrix instead
of using of full matrices. We use matrix V11 — a cholesky decomposition of matrix K(X1),
K(X1) = V11V

T
11 and matrix V = K̃(X,X1)V

−T
11 . Sparse approximation of expectation (A.6)

is:

f̂h(X
∗) ≈K(X∗,X1)(K(X1) + K̃(X,X1)

T K̃(X,X1))
−1K̃(X,X1)

TRY = (A.9)

K(X∗,X1)V11(I + V TV )−1V TY. (A.10)

Sparse approximation of a variance (A.7) at points X∗ is:

V
[
f̂h(X

∗)
]

= diag(K(X∗,X1)V
−T
11 (I + V TV )−1V −111 K(X∗,X1)

T ) + ρ2µlσ
2
l + µdσ

2
d.

A.4 Black box for low fidelity model

Construction of GTDF procedure for BB DF doesn’t differ from sample based GTDF for
VFGP and DA methods. The main difference between BB DF and sample based DF is that
the prediction for BB DF is updated using the value of low fidelity model calculated for the
given input points. Let us denote by

Yexp =

(
Y

yl(X)

)
Then for each output dimension covariance vector takes the form

kl(X) =

(
cl(X,Xl)
ρcl(X,Xh)

)
.
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Self covariance for low fidelity point is

cl(X) = µl(kl(X,X) + σ2
l ).

Matrix of covariances for expanded sample is

Kexp =

(
K kTl (X)

kl(X) cl(X)

)
.

Expanded covariance vector is

kexp(X) =

(
k(X)

ρcl(X,X)

)
.

Then we can use equation similar to usual gaussian process equations for a posterior expec-
tation

f̂h(X) = kexp(X)K−1expYexp.

and a posteriori variance function

V
[
f̂h(X)

]
= ρ2µl(kl(X,X) + σ2

l ) + µd(kd(X,X) + σ2
d)− kexp(X)TK−1expkexp(X).

Fast update (calculation of K−1exp) is possible due to special matrix inversion formulas.
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The GTApprox workflow

B.1 Overview

The workflow with the GTApprox includes the following elements.

• Construction of the model. Construction of the model internally consists of the
following steps:

1. Preprocessing. At this step, redundant data are removed from the training set.

2. Analysis of training data and options, selection of approximation tech-
nique. At this step, the parameters of the training data and the user–specified
options are analyzed for compatibility, and the most appropriate approximation
technique is selected.

3. Internal Validation (optional). At this step, Internal Validation of the selected
approximation technique is performed on the training data, if the corresponding
option is turned on.

4. Construction of the main approximation with (optionally) Accuracy
Evaluation prediction. At this step, the main approximation, to be returned to
the user, is constructed. Also, the accompanying Accuracy Evaluation prediction
is constructed if the corresponding option is turned on.

After the model has been constructed, the user can view training settings, Internal
Validation errors (if available) and export the approximation to a text file.

• Evaluation of the model. Evaluation of the constructed model on a point from the
design space includes the following steps:

1. Smoothing (optional). The constructed approximation is smoothed by convo-
lution with a smoothing kernel.

2. Evaluation of the approximation, gradient and accuracy prediction (if
available). Note: the gradient and the accuracy prediction are computed after
the approximation has been (optionally) smoothed.

In formal notation for given sample S = (Y,X) = {(f(Xi), Xi)}Ni=1, where Xi ∈ Rdin ,
f(Xi) ∈ Rdout , sample size N = |S|, we build an approximation f̂(X) of f(X).
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B.2 Data processing

Before applying the approximation technique to the training set, this training set is prepro-
cessed in order to remove possible degeneracies in the data. Let XY be the |S|× (din +dout)
matrix of the training data, where the rows are (din + dout)-dimensional training points,
and the columns are individual scalar components of the input or output. As explained in
Section 2, the matrix XY consists of the sub-matrices X and Y. We perform the following
operation with the matrix XY:

1. We remove all constant columns in the sub-matrix X. A constant column in X means
that all the training vectors have the same value of one of the input components. In
particular, this means that the training DoE is degenerate and lies in a proper subspace
of the design space. When constructing the approximation, such input components are
ignored.

2. We remove repeating rows in the matrix XY . A repeating row means that the same
training vector is included more than once in the training matrix. Repetitions bring
no additional information and are therefore ignored; a repeating row is counted only
once.

If the above operations are nontrivial, e.g., if the matrix X does contain constant columns or
the matrix XY does contain repeating rows, then the removals are accompanied by warnings.

As a result of these operations, we obtain a reduced matrix X̃Y consisting of the subma-
trices X̃ and Ỹ. Accordingly, we define effective input dimension and the effective sample
size as the corresponding dimensions of the sub-matrix X̃.

Note that after removing repeating rows in XY the reduced matrix may still contain
rows which have the same X components but different Y components. This means that the
training data is so noisy that, in general, several different outputs correspond to the same
input. Such noisy problems may require a special tuning of GTApprox; in particular not
all approximation techniques are appropriate for them. If the training data does contain
rows with equal X but different Y components, the tool produces a warning.

The model constructed by GTApprox is constructed using the reduced matrix X̃Y
rather than the original matrix XY. Furthermore, it is the effective input dimension and
sample size, rather than the original ones, that are used when required at certain steps,
in particular when determining the default approximation technique and choosing the de-
fault Internal Validation parameters. For example, if the original input dimension has been
reduced to 1, then the default 1D technique will be applied to this data by default. The
resulting approximation is then considered as a function of the full din-dimensional input,
but it depends only on those components of the full input which have been included in X̃.

GTApprox combines a number of approximation techniques of different types. By
default, the tool selects the optimal technique compatible with the user–specified options and
in agreement with the best practice experience. Alternatively, the user can directly specify
the technique through advanced options of the tool. This section describes the available
techniques; selection of the technique in a particular problem is described in Section C.

B.3 Individual approximation techniques

The following sections describe general aspects of approximation techniques of GTApprox.
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B.3.1 Regularized linear regression

Short name: LR

General description: Regularized linear regression. Regularization coefficient is esti-
mated by minimization of generalized cross-validation criterion [16].

Strengths and weaknesses: A very robust and fast technique with a wide applicability
in terms of the space dimensions and amount of the training data. It is, however, usually
rather crude, and the approximation can hardly be significantly improved by adding new
training data.

Restrictions: Interpolation mode is not supported, AE is not supported. Large samples
and dimensions are fully supported (up to machine-imposed limits).

Options: No options.

B.3.2 1D Splines with tension

Short name: SPLT

General description: A one–dimensional spline–based technique intended to combine the
robustness of linear splines with the smoothness of cubic splines. A non–linear algorithm is
used for an adaptive selection of the optimal weights on each interval between neighboring
points of DoE. The default implementation in GTApprox is already interpolating, so that
the Int switch has no effect on it. See [17,22,23] for details.

Strengths and weaknesses: A very fast technique, combining robustness of linear splines
with the accuracy and smoothness of cubic splines. Interpolating. Should not be applied to
very noisy problems . On the other hand, performs well if the training data is noiseless. Is
the default method for 1D problems in GTApprox.

Restrictions: Only for 1D models (din = 1). Can be used with very large training sets
(more than 10000 points).

Options:

• SPLTContinuity

Values: enumeration: C1, C2

Default: C2

Short description: required approximation smoothness.

Description: If C2 is selected, then the approximation curve will have a continuous
second derivative. If C1 is selected, only the first derivative will be continuous.

B.3.3 High Dimensional Approximation

Short name: HDA
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General description: A non–linear, self–organizing technique for construction of approx-
imation using linear decomposition in functions from functional dictionary consisting of both
linear and nonlinear base functions. Particular example of such decomposition is so-called
two-layer perceptron with nonlinear (sigmoid) activation function. However, the structure
and algorithm of HDA is completely different from that of two-layer perceptron and contains
the following features:

• an advanced algorithm of division of the training set into the proper training and
validating parts;

• different types of base functions, including sigmoid and gaussian functions (see also
description of options HDAFDLinear, HDAFDSigmoid and HDAFDGauss below);

• adaptive selection of the type and number of base functions and approximation’s com-
plexity (see also description of options HDAPMin and HDAPMax below);

• an innovative algorithm of initialization of base functions’ parameters (see also descrip-
tion of options HDAInitialization and HDARandomSeed below);

• several different optimization algorithms used to adjust the parameters, including
RPROP, Levenberg–Marquardt and their modifications;

• an adaptive strategy controlling the type and parameters of used optimization algo-
rithms (see also description of the option HDAHPMode below);

• an adaptive regularization algorithm for controlling the generalization ability of the
approximation;

• multi–start capabilities to globalize the optimization of the parameters (see also de-
scription of options HDAMultiMin and HDAMultiMax below);

• an advanced algorithm for boosting used for construction of ensembles for additional
improvement of accuracy and stability (see also description of the option HDAPhaseCount
below);

• post–processing of the results to remove redundant features in the approximation.

In short the HDA algorithm works as follows:

1. The training set is devised into the proper training and validating parts.

2. Functional dictionary with different types of base functions, including sigmoid and
gaussian functions, is initialized.

3. The number, type of base functions from the functional dictionary and approximation’s
complexity are adaptively selected. Thus a basic approximator is initialized.

4. The basic approximator is trained using an adaptive strategy controlling the type and
parameters of used optimization algorithms. Specially elaborated adaptive regulariza-
tion is used to control the generalization ability of the basic approximator.

5. Post–processing of the basic approximator’s structure is done in order to remove re-
dundant base functions.
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6. An ensemble consisting of such basic approximators is constructed using an advanced
algorithm for boosting and multi–start.

See [2] for details.

Strengths and weaknesses: HDA is a flexible nonlinear approximation technique, with
a wide applicability in terms of space dimensions. HDA can be used with large training
sets (more than 1000 points). However, HDA is not well-suited for the case of very small
sample sizes. Significant training time is often necessary to obtain accurate approximation
for large training samples. HDA can be applied to noisy data. Usually, accuracy of HDA
approximations improves as more training data are supplied.

Restrictions: Interpolation mode is not supported, AE is not supported. Large samples
and dimensions are supported.

Options:

• HDAPhaseCount

Values: integer [1, 50].

Default: 10.

Short description: Maximum number of approximation phases.

Description: PhaseCount parameter specifies the maximum possible number of ap-
proximation phases. The parameter can take positive integer values. Usually for
particular problem the number of approximation phases completed by the approx-
imation algorithm is smaller than the maximum possible number of approximation
phases (approximation algorithm stops performing approximation phases as soon
as the subsequent approximation phase do not increase the accuracy). In general
the more approximation phases we have the more accurate approximator we get.
However increase of the maximum possible number of approximation phases can
lead to significant increase of training time or/and to overtraining in some cases.

• HDAPMin

Values: integer [0, HDAPMax].

Default: 0.

Short description: Minimum admissible complexity.

Description: Parameter specifies minimal admissible complexity of the approxima-
tor. This parameter can take non-negative integer values and must be less or
equal to the value of the parameter HDAPMax. The approximation algorithm
selects the approximator with optimal complexity pOpt from the range [HDAP-
Min, HDAPMax]. Optimality here means that depending on the complexity of
the behavior of approximable function and the size of the available training sample
the constructed approximator with complexity pOpt fits this function in the best
possible way compared to approximators with other complexities from the range
[HDAPMin, HDAPMax]. Thus the parameter HDAPMin should not be too big
in order to select the approximator with complexity being the most appropriate
for the considered problem. In general increase of the parameter HDAPMin can
lead to significant increase of training time or/and to overtraining in some cases.
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• HDAPMax

Values: integer [HDAPMin, 5000] non-negative integer, greater than or equal to
HDAPMin.

Default: 150.

Short description: Maximum admissible complexity.

Description: Parameter specifies maximal admissible complexity of the approxima-
tor. This parameter can take non-negative integer values and must be greater
or equal to the value of the parameter HDAPMin. The approximation algorithm
selects the approximator with optimal complexity pOpt from the range [HDAP-
Min, HDAPMax]. Optimality here means that depending on the complexity of
the behavior of approximable function and the size of the available training sample
the constructed approximator with complexity pOpt fits this function in the best
possible way compared to approximators with other complexities from the range
[HDAPMin, HDAPMax]. Thus the parameter HDAPMax should be big enough
in order to select the approximator with complexity being the most appropriate
for the considered problem. In general increase of the parameter HDAPMax can
lead to significant increase of training time or/and to overtraining in some cases.

• HDAMultiMin

Values: integer [1, HDAMultiMax]

Default: 5.

Short description: Minimal number of basic approximators constructed during one
approximation phase.

Description: Parameter specifies minimal number of basic approximators constructed
during one approximation phase. The parameter can take positive integer values
and must be less or equal to the value of the parameter HDAMultiMax. In general
the bigger the value of HDAMultiMin the more accurate approximator we get.
However increase of this parameter can lead to significant increase of training
time or/and to overtraining in some cases.

• HDAMultiMax

Values: integer [HDAMultiMin, 1000].

Default: 10.

Short description: Maximal number of basic approximators constructed during one
approximation phase.

Description: Parameter specifies maximal number of basic approximators constructed
during one approximation phase. The parameter can take positive integer values
and is greater or equal to the value of the parameter HDAMultiMin. Usually for
particular problem the number of basic approximators constructed by the approx-
imation algorithm is smaller than the maximum possible number HDAMultiMax
of basic approximators (approximation algorithm stops constructing basic ap-
proximators as soon as the construction of subsequent basic approximator does
not increase the accuracy). In general the bigger the value of HDAMultiMax the
more accurate approximator we get. However increase of this parameter can lead
to significant increase of training time or/and to overtraining in some cases.
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• HDAFDLinear

Values: enumeration: No, Ordinary.

Default: Ordinary.

Short description: include linear functions into functional dictionary used for con-
struction of approximations.

Description: In order to construct approximation a linear expansion in functions
from special functional dictionary is used. The parameter HDAFDLinear con-
trols whether linear functions should be included into functional dictionary used
for construction of approximation or not. In general usage of linear functions as
building blocks for construction of approximation can lead to increase in accu-
racy, especially in the case when the approximable function has significant linear
component. However usage of linear functions can lead to increase of training
time as well.

• HDAFDSigmoid

Values: enumeration: No, Ordinary

Default: Ordinary.

Short description: include sigmoid functions (with adaptation or without adapta-
tion) into functional dictionary used for construction of approximations.

Description: In order to construct approximation a linear expansion in functions
from special functional dictionary is used. The parameter HDAFDSigmoid con-
trols whether sigmoid-like functions should be included into functional dictionary
used for construction of approximation or not. In general usage of sigmoid-like
functions as building blocks for construction of approximation can lead to increase
in accuracy, especially in the case when the approximable function has square-
like or discontinuity regions. However usage of sigmoid-like functions can lead to
significant increase of training time.

• HDAFDGauss

Values: enumeration: No, Ordinary.

Default: Ordinary.

Short description: include Gaussian functions into functional dictionary used for
construction of approximations.

Description: In order to construct approximation a linear expansion in functions
from special functional dictionary is used. The parameter HDAFDGauss controls
whether Gaussian functions should be included into functional dictionary used
for construction of approximation. In general usage of Gaussian functions as
building blocks for construction of approximation can lead to significant increase
in accuracy, especially in the case when the approximable function is bell-shaped.
However usage of Gaussian functions can lead to significant increase of training
time.

• HDAInitialization

Values: enumeration: Deterministic, Random
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Default: Deterministic

Short description: switch between deterministic and random initialization of pa-
rameters of the approximator.

Description: The approximator construction technique implemented in the tool uses
a random number generator for initialization of the parameters of approximator,
thus the approximators constructed using the same data with different random
initializations may be slightly different. If you need the approximators produced
in each HDA GT run to be fully identical for the same data with other parameters
having fixed values, you must always select the value of parameter HDAInitial-
ization equal to the value Deterministic. Otherwise (if the parameter HDAIni-
tialization is equal to the value Random) random initialization of parameters of
approximator is used. Random initialization of parameters of approximator can
be used in order to obtain more accurate approximator since for different initial-
izations the accuracies of obtained approximators may be slightly different.

• HDARandomSeed

Values: integer [1, 2147483647].

Default: 0

Short description: Seed value for the random number generator used for random
initialization of the parameters of approximator.

Description: In case the parameter HDAInitialization is equal to the value Random
then random initialization of the parameters of approximator is used. The value
of the parameter HDAInitialization defines the seed value for the random number
generator. There are two possibilities: the value of HDAInitialization is initialized
randomly (default option) or its value is defined by the User (any positive integer).

• HDAHessianReduction

Values: Real number from the interval [0, 1].

Default: 0

Short description: Maximum proportion of data used for evaluation of Hessian ma-
trix.

Description: The parameter shrinks maximum amount of data points for Hessian
estimation (used in high-precision algorithm). If the parameter is equal to 0, the
whole points set is used for Hessian estimation, otherwise if parameter belongs
to (0, 1] only part (smaller than HDAHessianReduction of whole train points) is
used. Reduction is used only in case of samples bigger than 1000 input points (if
number of points is smaller than 1000 points, parameter is not taken into account
and Hessian is estimated by whole train sample).

Remark: Whether GTApprox/HDAHessianReduction = 0 or not, high-precision al-
gorithm can be nevertheless automatically disabled. This happens if

1. (dim(X) + 1) · p ≥ 4000, where dim(X) is the dimension of the input vector
X and p is a total number of basis functions.

2. dim(X) ≥ 25, where dim(X) is the dimension of the input vector X.

3. there are no sufficient computational resources for the usage of the HP-
algorithm.
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B.3.4 Gaussian Processes

Short name: GP

General description: A flexible non–linear, non-parametric technique for constructing of
approximation by modeling training data sample as a realization of an infinite dimensional
Gaussian Distribution fully defined by a mean function and a covariance function [7, 21].
Approximation is based on a posteriori mean (for the given training data) of the considered
Gaussian Process with a priori selected covariance function. AE is supported and is based on
the a posteriori covariance (for the given training data) of the considered Gaussian Process.
GP contains the following features:

• flexible functional class for modeling covariance function (see also description of option
GPPower below);

• an innovative algorithm of initialization of parameters of the covariance function;

• an adaptive strategy controlling the parameters of used optimization algorithm;

• an adaptive regularization algorithm for controlling the generalization ability of the
approximation;

• multi–start capabilities to globalize the optimization of the parameters;

• usage of errorbars (variances of noise in output values at training points) to efficiently
work with noisy problems and improve quality of approximation and AE;

• post–processing of the results to remove redundant features in the approximation.

In short the GP algorithm works as follows:

1. Parameters of the covariance function are initialized;

2. Covariance model of the data generation process is identified by maximizing likelihood
of the training data.

3. Post–processing of approximator’s structure is done.

See [4] for details.

Strengths and weaknesses: GP usually demonstrates accurate behavior in the case of
small and medium sample sizes. Both interpolation and approximation modes are supported
(interpolation mode should not be applied to noisy problems). AE is supported. GP is
designed for modeling of “stationary” (spatially homogeneous) functions, therefore GP is not
well-suited for modeling spatially inhomogeneous functions, functions with discontinuities
etc. GP is a resource-intensive method in terms of ram capacity, therefore large samples are
not supported.

Restrictions: Large dimensions are supported. Large samples are not supported.
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Options:

• GPPower

Values: Real number from the interval [1, 2].

Default: 2.

Short description: The value of the parameter p in the p-norm wich is used to
measure the distance between the input vectors.

Description: The main component of the Gaussian Process (GP) based regression is
the covariance function measuring the similarity between two input points. The
covariance between two input uses p-norm of the difference between coordinates of
these input points. The case p = 2 corresponds to the usual gaussian covariance
function (better suited for modelling of smooth functions) and the case p = 1
corresponds to laplacian covariance function (better suited for modelling of non-
smooth functions).

• GPType

Values: enumeration: Wlp, Mahalanobis

Default: Wlp

Short description: Type of covariance function

Description: Type of the covariance function used in the Gaussian process. Two
modes are avaliable. Wlp refers to the widely-used exponential gaussian covari-
ance function, Mahalanobis refers to squared exponential covariance function
with Mahalanobis distance. In particular, the Mahalanobis mode can be used
only with GPPower equal to 2.

• GPLinearTrend

Values: boolean.

Default: off.

Short description: Use linear trend for approximation based on gaussian processes
(GP technique only)

Description: Allows user to take into account linear behavior of the function being
approximated. If the option is on, then covariance function of GP is a linear
combination of stationary covariance (defined by the parameter GPType) and
non-stationary covariance based on linear trend. In general, such composite co-
variance can lead to increase in accuracy (for functions with “linear behavior”),
but also can lead to significant increase of training time (up to three times).

• GPMeanValue

Values: comma-separated list of floating point values, enclosed in square brackets.
This list should be empty or the number of its elements should be equal to output
dataset’s dimensionality

Default: [].

Short description: specifies mean value of model’s output mean values
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Description: models output mean values are necessary for construction of GP ap-
proximation. Model’s output mean values can be defined by the User or can
be estimated using the given sample (the bigger and more representative is the
sample, the better is the estimate of model’s output mean values). Model’s out-
put mean values misspecification leads to decrease in aproximation accuracy: the
larger the error in output mean values is, the worser is the final approximation
model. If GPMeanValue = [], then model’s output mean values are estimated
using the given sample.

B.3.5 High Dimensional Approximation combined with Gaussian
Processes

Short name: HDAGP

General description: HDAGP is a flexible nonlinear approximation technique, with a
wide applicability in terms of space dimensions. GP usually demonstrates accurate behavior
in the case of small and medium sample sizes. However GP is mostly designed for modeling
of “stationary” (spatially homogeneous) functions. HDAGP extends the ability of GP to
deal with spatially inhomogeneous functions, functions with discontinuities etc. by using the
HDA-based non-stationary covariance function.

Strengths and weaknesses: HDAGP usually demonstrates accurate behavior in the case
of medium sample sizes. Both interpolation and approximation modes are supported (in-
terpolation mode should not be applied to noisy problems). AE is supported. However
HDAGP approximation is the slowest method compared to HDA method and GP method.
HDAGP is a resource-intensive method in terms of ram capacity, therefore large samples are
not supported.

Restrictions: Large dimensions are supported. Large samples are not supported.

Options: Options of HDAGP consist of both HDA options and GP options. In general
HDAGP algorithm contains both HDA features and GP features. In short the HDAGP
algorithm works as follows:

1. HDA approximator is constructed and base functions from this approximator are ex-
tracted;

2. Non-stationary covariance model of the data generation process is initialized by using
the HDA-based non-stationary covariance function.

3. Non-stationary covariance model of the data generation process is identified by maxi-
mizing likelihood of the training data.

4. Post–processing of approximator’s structure is done.

See [4] for details.

B.3.6 Sparse Gaussian Process

Short name: SGP
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General description: SGP is an approximation of GP which allows to construct GP
models for larger train sets than the standard GP is able to. The motivation for SGP is
both to provide a higher accuracy of the approximation and enable Accuracy Evaluation
for larger training sets. Current implementation of the algorithm is based on the Nystroem
approximation [21] and V-technique for subset of regressors method [15].

Algorithms properties: SGP provides both approximation and AE for large training set
sizes (by default, SGP is used for |S| from 1001 to 9999 if AE is required). All GP features,
except interpolation, are supported.

In short, the algorithm of SGP works as follows:

• Choose a subset S ′ (base points) from the training set S. The size of S ′ is 1000 by
default, but can be changed by user.

• Initialize parameters of the SGP covariance function as parameters of GP trained with
S ′.

• Calculate the posterior parameters of SGP.

Restrictions: Large training sets are supported. Large dimensions are supported. Inter-
polation is not supported.

Options (different from GP’s, internal):

• SGPNumberOfBasePoints
Values: Positive integer greater than 1.

Default: 1000.

Short description: Number of Base Points used to approximate full matrix of co-
variances between points from the training sample.

Description: Base Points (subset of regressors) are selected randomly among points
from the training sample and used for the reduced rank approximation of the full matrix
of covariances between points from the training sample. Reduced rank approximation
is done using Nystrom method for selected subset of regressors. Note that if the value
of SGPNumberOfBasePoints is greater than the dataset size then GP technique
will be used.

• SGPSeedValue
Values: integer in [0, 2147483647].

Default: 15313.

Short description: Seed value which defines random selection of Base Points used
to approximate full matrix of covariances between points from the training sample.

Description: The value of the parameter SGPSeedValue defines the seed value for
the random number generator. If this value is zero then random seed will be used.
Seed value defines random selection of Base Points used to approximate full matrix
of covariances between points from the training sample. Approximation is done using
reduced rank approximation based on Nystrom method for selected subset of regressors
(selected Base Points).
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B.3.7 Response Surface Model

Short name: RSM

General description: RSM is a kind of linear regression model with several approaches
to regression coefficients estimation. RSM can be either linear or quadratic with respect to
input variables. Also RSM supports categorical input variables.

Strengths and weaknesses: A very robust and fast technique with a wide applicability in
terms of the space dimensions and amount of the training data. It is, however, usually rather
crude, and the approximation can hardly be significantly improved by adding new training
data. In addition, the number of regression terms can increase rapidly with increasing of
dimension, if quadratic RSM is used.

Restrictions: Interpolation mode is not supported, Accuracy Evaluation is not supported.

Options:

• RSMType

Values: enumeration: linear, interactions, purequadratic, quadratic

Default: linear

Short description: Specifies type of the Response Surface Model

Description: RSMType specifies what type of Response Surface Model is going to be
constructed:

– linear includes constant and linear terms;

– interactions includes constant, linear, and interaction terms;

– quadratic includes constant, linear, interaction, and squared terms;

– purequadratic includes constant, linear, and squared terms.

• RSMFeatureSelection

Values: enumeration: LS, RidgeLS, MultipleRidgeLS, StepwiseFit

Default: RidgeLS

Short description: Specifies the regularization and term selection procedures used
for estimation of model coefficients.

Description: RSMFeatureSelection specifies what technique is going to be used
for regularization and term selection: LS assumes ordinary least squares (no reg-
ularization, no term selection); RidgeLS assumes least squares with Tikhonov
regularization (no term selection); MultipleRidgeLS assumes multiple ridge
regression that also filters not important terms; StepwiseFit assumes ordinary
least squares regression with stepwise inclusion/exclusion for term selection.

Remarks: Note that term here means not one of the input variables but one of the
columns in the design matrix that can consist of intercept, input variables with
their squares and interaction products between input variables.

• RSMMapping
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Values: enumeration: None, MapStd, MapMinMax

Default: MapStd

Short description: Specifies mapping type for data preprocessing.

Description: Specifies which technique is used for data preprocessing: None assumes
no data preprocessing; MapStd assumes linear mapping of standard deviation for
each variable to [-1, 1] range; MapMinMax assumes linear mapping of values for
each variable into [-1, 1] range.

• RSMStepwiseFit/inmodel

Values: enumeration: IncludeAll, ExcludeAll

Default: ExcludeAll

Short description: Specifies starting model for RSMFeatureSelection= StepwiseFit.

Description: Specifies what terms are initially included in the model when RSMFeatureSelection
equals StepwiseFit. There are two cases: IncludeAll assumes start with
full model (all terms included); ExcludeAll assumes none of the terms is in-
cluded in the starting step. Depending on the terms included in the initial model
and the order in which terms are moved in and out, the method may build different
models from the same set of potential terms.

• RSMStepwiseFit/penter

Values: float in range (0., premove]

Default: 0.05

Short description: Specifies p-value of inclusion for RSMFeatureSelection =
StepwiseFit.

Description: Specifies maximum p-value of F-test for a term to be added into the
model. The higher the value the more terms would be in general included into
the final model.

• RSMStepwiseFit/premove

Values: float in range [penter, 1.)

Default: 0.10

Short description: Specifies p-value of exclusion for RSMFeatureSelection =
StepwiseFit.

Description: Specifies minimum p-value of F-test for a term to be removed from the
model. The higher the value the more terms would be in general included into
the final model.

• RSMCategoricalVariables

Values: list of 0-based indices of categorical variables

Default: [ ]

Short description: List of indices for categorical variables.

Description: Contains indices of categorical variables in the input matrix Xtrain.
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B.4 Limitations

The common restriction on the minimum size |S| of the training set for the majority of
techniques is

|S| > 2din + 2,

where din is the input dimension of the data. The exceptions are RSM, LR (minimal size
|S| = 1) and TA techniques. In case TA technique of minimal size depends on factorization
but |S| should be at least 2n where n is number of factors. Also this restriction on the
minimum size |S| depends on Internal Validation option (the above restrictions are true for
InternalValidation = Off). If InternalValidation = On then sample size |S|
should be higher (see details in the technical reference [10]).

As explained in Section B.2, all conditions above refers to the effective values, i.e., ob-
tained after preprocessing of the training data. An error with the corresponding error code
will be returned if this condition is violated.

The maximum size of the training sample which can be processed by the tool is primarily
determined by the user’s hardware. Necessary hardware resources depend significantly on
the specific technique. See descriptions of individual techniques.

Limitations of different approximation techniques are summarized in Table B.1.

Technique Compatible with
Performance on very
large training sets

Other restrictions

Lin Int AE

SPLT No Yes Yes 1D only

LR Yes No No

GP No Yes Yes limited by memory

HDA Yes No No possibly long runtime

HDAGP No Yes Yes
limited by memory,
possibly long runtime

SGP No No Yes

RSM Yes No No

Table B.1: Limitations of approximation techniques

B.5 Example: comparison of the techniques on a 1D

problem

In Figure B.1, the five techniques of GTApprox are compared on a 1D test problem. The
parts a), b), c) of the figure represent the five approximations, their respective derivatives,
and Accuracy Evaluation results (where available). AE results depend significantly on the
type of approximation.
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Figure B.1: Comparison of the five approximation methods of GTApprox on the same 1D
training data.
Note: This image was obtained using an older pSeven Core version. Actual results in the current
version may differ.
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Appendix C

Selection of the approximation
technique and the default decision
tree for GTApprox

This section details manual and automatic selection of one of the approximation techniques
described in Section B.

C.1 Manual selection

The user may specify the approximation technique by setting the option Technique which
may have the following values:

• Auto — best technique will be determined automatically (default)

• LR — Linear Regression

• SPLT — Splines with Tension

• HDA — High Dimensional Approximation

• GP — Gaussian Processes

• HDAGP — High Dimensional Approximation + Gaussian Processes

• SGP — Sparse Gaussian Processes

• TA — Tensor Approximation

• iTA — Tensor Approximation for incomplete grids

• RSM — Response Surface Model

C.2 Automatic selection

The decision tree describing the default selection of the approximation technique is shown
in Figure C.1. The factors of choice are1:

1Some discussion of why these are essential factors of choice can be found in the development proposal [25].
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Figure C.1: The GTApprox internal decision tree for the choice of default approximation meth-
ods
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• Size |S| and input dimension din of the training sample;

• The state of the switches Lin, Int and AE.

The result is the constructed approximation, possibly with an accuracy prediction, or an
error. The selection is performed in agreement with properties of individual approximation
techniques as described in section B.3. In particular:

• The default 1D technique is SPLT having good all–around performance. It is very fast
and can efficiently handle both small and very large training sets. As it is interpolating,
it should be replaced with a smoothing technique if the training data is very noisy.

• In dimensions 2 and higher, the default techniques are GP, HDAGP and HD, depending
on the size |S| of the training set:

– If |S| ≤ 2din + 2, then the default technique is RSM, which is robust for such
small sets.

– If 2din + 2 < |S| < 125, then the default technique is GP, which is normally
efficient for rather small sets.

– If 125 ≤ |S| ≤ 500, then the default technique is HDAGP, combining GP with
HDA.

– If 500 < |S| ≤ 1000, then the technique depends on whether Accuracy Evaluation
or Interpolation is required:

∗ If both AE and Int are off, then the default technique is HDA;

∗ Otherwise, the default technique is HDAGP.

– If 1000 < |S| < 10000, then the technique depends on whether Accuracy Evalua-
tion is required:

∗ If AE is off, then the default technique is HDA;

∗ Otherwise, the default technique is SGP.

– If |S| ≥ 10000, then the default technique is HDA, which can handle the largest
sets (note, however, that the Interpolation mode and AE are not available for it).

The threshold values 2din + 2, 125, 500, 1000 and 10000 for |S| have been set based on
previous experience and extensive testing.

In Figure C.2 the “sample size vs. dimension” diagram for the default choice is shown.

55



APPENDIX C. SELECTION OF APPROXIMATION TECHNIQUE FOR GTAPPROX

0 5 125 500 1000 10000
|S|, size of the training set

1

d
in
, 
in

p
u
t 

d
im

e
n
si

o
n

SPLT

GP HDAGP

HDAGP
if AE or Int is ON

HDA
otherwise

SGP
if AE is ON

HDA
otherwise

HDA

|S
|=

2d
in

+
2

Figure C.2: The “sample size vs. dimension” diagram of default techniques in GTApprox
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Acronyms

DA Difference approximation. 9

GP Gaussian Processes. 45

HDA High Dimensional Approximation. 39

HDAGP High Dimensional Approximation combined with Gaussian Processes. 47

HFA High fidelity approximation. 8

LR Linear Regression. 39

RSM Response Surface Model. 49

SGP Sparse Gaussian Processes. 47

SPLT 1D Splines with tension. 39

SVFGP Sparse variable fidelity gaussian processes. 10

VFGP Variable fidelity gaussian processes. 10
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Index: concepts

GTDF approximation techniques, 8
GTDFBB approximation techniques, 11

accuracy evaluation, 18
AE, 18

decision tree, 53
decision tree for GTDF, 12

effective input dimension, 38
effective sample size, 38

Inernal Validation, 19
interpolation, 16
IV, 19
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Index: GTDF options
Note: these are shortened names of the options. The full names for GTDF are obtained

by adding GTDF/ in front of the shortened name, e.g. GTDF/Technique.

Accelerator, 18
AccuracyEvaluation, 18
Componentwise, 17
InternalValidation, 19
InterpolationRequired, 16
IVRandomSeed, 19
IVSubsetCount, 19
IVTrainingCount, 19
Technique, 12
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Index: GTApprox options
Note: these are shortened names of the options. The full names for GTApprox are

obtained by adding GTApprox/ in front of the shortened name, e.g.

GTApprox/Technique.

GPLinearTrend, 46
GPMeanValue, 46
GPPower, 46
GPType, 46
HDAFDGauss, 43
HDAFDLinear, 43
HDAFDSigmoid, 43
HDAHessianReduction, 44
HDAInitialization, 43
HDAMultiMax, 42
HDAMultiMin, 42
HDAPhaseCount, 41
HDAPMax, 42
HDAPMin, 41
HDARandomSeed, 44
RSMCategoricalVariables, 50
RSMFeatureSelection, 49
RSMMapping, 49
RSMStepwiseFit/inmodel, 50
RSMStepwiseFit/penter, 50
RSMStepwiseFit/premove, 50
RSMType, 49
SGPNumberOfBasePoints, 48
SGPSeedValue, 48
SPLTContinuity, 39
Technique, 53
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