Towards Large-Scale Surrogate-Based Optimization

F.V. Gubarev, A.I. Pospelov

AN AIRBUS GROUP COMPANY

Introduction

SBO Context [Dis]Advantages and Reservations Summary

Hierarchical Treatment

Qualitative Picture Hierarchical Model Summary

Illustrations

Introduction

SBO Context [Dis]Advantages and Reservations Summary

Hierarchical Treatment Qualitative Picture Hierarchical Model Summary

Illustrations

SBO methods fit nicely into **Eng**ineering **Opt**imization framework:

- Evaluation budget is easily controlled and is minimal [in the majority of cases]
- Robust wrt undefined designs and noisy responses
- Search is globalized with easily regulated globalization degree

SBO usage is truly justified when:

• Underlying model evaluation is time-expensive compared to the time-cost of internal optimizer activities:

 $T_{external} \gg T_{internal}$

We assume that without externally imposed budget the number of sampled designs remains relatively small

$N_{sample} \ll 2^D$

(e.g., underlying model multi-modality is only moderate)

Generic SBO scheme:

- Generate DoE-based sample
- ② Construct the surrogate model(s)
- Globally optimize model-based criterion to get evaluation candidates
- 4 Evaluate underlying model at predicted designs
- **5** Augment current sample, goto 2

For concreteness we'll discuss Gaussian Processes based models with stationary correlations.

What are the bottlenecks of the above scheme?

Major bottlenecks:

1 GP Model Construction (Training)

Conventional training becomes technically impossible at $N_{sample} \sim O(10^3)$. Using an estimate $N_{sample} \sim D^2$ (quadratic RSM) we obtain:

 $D_{max} \sim O(10)$

② Optimization of model-derived criterion

It is virtually impossible to predict GP model changes upon sample augmentation. Hence, computationally expensive **global** optimization of model-derived criterion is to be performed anew.

In fact, the above issues might easily lead to

 $T_{external} \ll T_{internal}$

in many practically relevant applications

Ultimately, one wants to:

- **1** Significantly reduce the cost of GP model construction
- 2 Boost the maximal available design space dimensionality
- **3** Get the control over model changes upon sample augmentation
- Let's estimate:
 - GP-type predictions require to invert correlation matrix at least once. Hence for direct matrix algorithms:

$$N_{sample}^{max} \sim O(10^4) ~~
ightarrow D_{max} ~\sim ~O(10^2)$$

The above could not come for free, admissible penalty is:

• Enlargement of required evaluation budget provided that we still have

$$T_{external} \lesssim T_{internal}$$

Introduction SBO Context [Dis]Advantages and Reservations Summary

Hierarchical Treatment

Qualitative Picture Hierarchical Model Summary

Illustrations

Qualitative picture of SBO-inspired optimization process:

Qualitative picture of SBO-inspired optimization process:

Qualitative picture of SBO-inspired optimization process:

Prime observations:

- 1 Evaluated designs cluster in promising regions
- **2** Hierarchy of length scales could be observed:

Let $\langle L \rangle_x$ denotes characteristic distance between nearest sampled designs around x. Then

- DoE stage: $\langle L \rangle_{\times} = L_0 \quad \forall x$
- After a few iterations (Ω is some promising region):

$$\langle L \rangle_x = L_0 \quad x \notin \Omega \qquad \langle L \rangle_x = L_1 \quad x \in \Omega \qquad L_1 \lesssim L_0$$

• At later stages (Ω_i are the nested promising regions):

$$\langle L \rangle_{x} = L_{0} \quad x \notin \Omega \\ \langle L \rangle_{x} = L_{1} \quad x \in \Omega_{1} \\ \dots \\ \langle L \rangle_{x} = L_{k} \quad x \in \Omega_{k} \\ L_{k} \lesssim \dots \lesssim L_{1} \lesssim L_{0}$$

At the expense of additional evaluations we could **enforce length scales hierarchy** at every iteration:

• Instead of single candidate evaluation we perform DoE sampling in candidate's vicinity, determined by upper region length scale.

Consequences:

• Underlying model is **not only probed** at candidate location x_c , but **is explored** in candidate's vicinity $\Omega(x_c)$

 $F(x_c) \rightarrow \{F(x_i)\}, i \in \Omega(x_c)$

2 Every iteration induces well-defined smaller length scale L_k

$$L_k \lesssim \cdots \lesssim L_1 \lesssim L_0$$
,

each L_k being associated with particular nested regions.

Anzats for **multi-resolution** GP correlation function, which reflects the above hierarchy of length scales:

$$\mathcal{K}(x,y) = \mathcal{K}^{(0)}(x,y) + \sum_{\mu} \alpha_{\mu} \sum_{i,j} \mathcal{K}^{(\mu)}(x,x_{\mu}^{i}) [\mathcal{K}^{(\mu)}]_{ij}^{-1} \mathcal{K}^{(\mu)}(x_{\mu}^{j},y),$$

where $\mathcal{K}^{(\mu)}$ are Ω_{μ} -specific correlation vector/matrix.

Parameters to be determined:

- K_(µ)-specific parameters
- Amplitudes $\alpha_{\mu} \ge 0$

Is that what we really wanted?

Clue is provided by basic observations:

• Prime parameter of every GP correlation function is its correlation length *L*, e.g.

 ${\cal K}^{(\mu)}(x,y) \sim e^{-|x-y|/L}, \qquad {\cal K}^{(\mu)}(x,y) \sim e^{-|x-y|^2/L^2}, \qquad \cdots$

• For dimensional reasons L is ought be of order L_{μ}

$$L \sim L_{\mu}$$

Now we qualitatively argue that within considered context:

- Missing factor of order unity in $L \sim L_{\mu}$
- Other details of "exact" correlator $K^{(\mu)}$

are not much important and represent next order effects.

Regularization parameter ("nugget" term):

- Number of sampled designs is relatively small, hence fair estimation of data noise is not possible
- Underlying model evaluation is sufficiently expensive, we want to account for all measured data

Thus, GP models are ought to be almost interpolating. Nugget term **is to be taken as small** as permitted by numerical stability.

Length scale asymmetry in design space:

- Samples are taken regular in each nested domain (DoE-like), hence no large asymmetry factor could arise
- GP-based models are quite robust wrt sufficiently large variations of length scale around correct value (not in extrapolation regime, sure)

Thus, length scale asymmetry in design space might be neglected.

Summary:

- Prime gross features of K^(µ) are known in advance once length scale hierarchy is respected
- Seems that could avoid $K^{(\mu)}$ -parameters tuning ("training") altogether
- Only amplitude α_{μ} is to be determined for every new region (every iteration)
- α_{μ} determination is cheap (no inversions of large matrices is involved)
- Knowledge of length scale hierarchy allows to predict the domains where model is changing upon sample augmentation.

Introduction

SBO Context [Dis]Advantages and Reservations Summary

Hierarchical Treatment

Qualitative Picture Hierarchical Model Summary

Illustrations

Notes:

- Conventional training process is **not** involved whatsoever
- Approximation quality is adequate at all steps
- Model scheme reflects "single" correlation length of input data
- Approximation changes **locally** upon insertion of new data points

Notes:

- Model scheme correctly reflects different correlation lengths of input data
- Approximation is adequate, moreover, it changes only locally upon the sample augmentation
- No usual training is involved

Notes:

• Conventional GP is **unstable** wrt sample augmentation: predictions might change globally upon only a few points insertion.