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SBO methods fit nicely into Engineering Optimization framework:

• Evaluation budget is easily controlled and is minimal [in the
majority of cases]

• Robust wrt undefined designs and noisy responses

• Search is globalized with easily regulated globalization degree

SBO usage is truly justified when:

• Underlying model evaluation is time-expensive compared to
the time-cost of internal optimizer activities:

Texternal � Tinternal

We assume that without externally imposed budget the number of
sampled designs remains relatively small

Nsample � 2D

(e.g., underlying model multi-modality is only moderate)
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Generic SBO scheme:

1 Generate DoE-based sample

2 Construct the surrogate model(s)

3 Globally optimize model-based criterion to get evaluation
candidates

4 Evaluate underlying model at predicted designs

5 Augment current sample, goto 2

For concreteness we’ll discuss Gaussian Processes based models
with stationary correlations.

What are the bottlenecks of the above scheme?
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Major bottlenecks:

1 GP Model Construction (Training)

Conventional training becomes technically impossible at
Nsample ∼ O(103). Using an estimate Nsample ∼ D2 (quadratic
RSM) we obtain:

Dmax ∼ O(10)

2 Optimization of model-derived criterion

It is virtually impossible to predict GP model changes upon
sample augmentation. Hence, computationally expensive
global optimization of model-derived criterion is to be
performed anew.

In fact, the above issues might easily lead to

Texternal � Tinternal

in many practically relevant applications

6/37



Ultimately, one wants to:

1 Significantly reduce the cost of GP model construction

2 Boost the maximal available design space dimensionality

3 Get the control over model changes upon sample
augmentation

Let’s estimate:

• GP-type predictions require to invert correlation matrix at
least once. Hence for direct matrix algorithms:

Nmax
sample ∼ O(104) → Dmax ∼ O(102)

The above could not come for free, admissible penalty is:

• Enlargement of required evaluation budget provided that we
still have

Texternal . Tinternal
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Qualitative picture of SBO-inspired optimization process:
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Qualitative picture of SBO-inspired optimization process:
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Qualitative picture of SBO-inspired optimization process:
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Prime observations:

1 Evaluated designs cluster in promising regions

2 Hierarchy of length scales could be observed:

Let 〈L〉x denotes characteristic distance between nearest
sampled designs around x . Then

• DoE stage: 〈L〉x = L0 ∀x
• After a few iterations (Ω is some promising region):

〈L〉x = L0 x /∈ Ω 〈L〉x = L1 x ∈ Ω L1 . L0

• At later stages (Ωi are the nested promising regions):

〈L〉x = L0 x /∈ Ω

〈L〉x = L1 x ∈ Ω1

· · ·
〈L〉x = Lk x ∈ Ωk

Lk . · · ·. L1 . L0
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At the expense of additional evaluations we could enforce length
scales hierarchy at every iteration:

• Instead of single candidate evaluation we perform DoE
sampling in candidate’s vicinity, determined by upper region
length scale.
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Consequences:

1 Underlying model is not only probed at candidate location
xc , but is explored in candidate’s vicinity Ω(xc)

F (xc) → {F (xi )}, i ∈ Ω(xc)

2 Every iteration induces well-defined smaller length scale Lk

Lk . · · ·. L1 . L0 ,

each Lk being associated with particular nested regions.
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Anzats for multi-resolution GP correlation function, which reflects
the above hierarchy of length scales:

K (x ,y) = K (0)(x ,y) + ∑
µ

αµ ∑
i ,j

K (µ)(x ,x iµ ) [K (µ)]−1ij K (µ)(x jµ ,y) ,

where K (µ) are Ωµ -specific correlation vector/matrix.

Parameters to be determined:

• K(µ)-specific parameters

• Amplitudes αµ ≥ 0

Is that what we really wanted?
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Clue is provided by basic observations:

• Prime parameter of every GP correlation function is its
correlation length L, e.g.

K (µ)(x ,y) ∼ e−|x−y |/L , K (µ)(x ,y) ∼ e−|x−y |
2/L2 , · · ·

• For dimensional reasons L is ought be of order Lµ

L ∼ Lµ

Now we qualitatively argue that within considered context:

• Missing factor of order unity in L∼ Lµ

• Other details of “exact” correlator K (µ)

are not much important and represent next order effects.
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Regularization parameter (“nugget” term):

• Number of sampled designs is relatively small, hence fair
estimation of data noise is not possible

• Underlying model evaluation is sufficiently expensive, we want
to account for all measured data

Thus, GP models are ought to be almost interpolating. Nugget
term is to be taken as small as permitted by numerical stability.

Length scale asymmetry in design space:

• Samples are taken regular in each nested domain (DoE-like),
hence no large asymmetry factor could arise

• GP-based models are quite robust wrt sufficiently large
variations of length scale around correct value (not in
extrapolation regime, sure)

Thus, length scale asymmetry in design space might be neglected.
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Summary:

• Prime gross features of K (µ) are known in advance once
length scale hierarchy is respected

• Seems that could avoid K (µ)-parameters tuning (“training”)
altogether

• Only amplitude αµ is to be determined for every new region
(every iteration)

• αµ determination is cheap (no inversions of large matrices is
involved)

• Knowledge of length scale hierarchy allows to predict the
domains where model is changing upon sample augmentation.
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Hierarchical modeling of (6x−2)2 sin[12x−4]
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Hierarchical modeling of (6x−2)2 sin[12x−4]
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Hierarchical modeling of (6x−2)2 sin[12x−4]
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Hierarchical modeling of (6x−2)2 sin[12x−4]
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Hierarchical modeling of (6x−2)2 sin[12x−4]
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Notes:

• Conventional training process is not involved whatsoever

• Approximation quality is adequate at all steps

• Model scheme reflects “single” correlation length of input data

• Approximation changes locally upon insertion of new data
points

25/37



Treating (6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]
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Treating (6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]
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Treating (6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]
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Treating (6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]
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Treating (6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]
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Notes:

• Model scheme correctly reflects different correlation lengths of
input data

• Approximation is adequate, moreover, it changes only locally
upon the sample augmentation

• No usual training is involved
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(6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]

Hierarchical treatment vs. usual GP
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(6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]

Hierarchical treatment vs. usual GP
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(6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]

Hierarchical treatment vs. usual GP
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(6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]

Hierarchical treatment vs. usual GP
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(6x−2)2 sin[12x−4] + 20(x−1/2)2 sin[50x ]

Hierarchical treatment vs. usual GP
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Notes:

• Conventional GP is unstable wrt sample augmentation:
predictions might change globally upon only a few points
insertion.
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