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1. Abstract

This work deals with theerodynamiceptimisation of a generitwo-dimensionathree element higlift configuration. Although the
hightlift system is applied only during talaff and landing in the low speed phase of the flight the cost efficiency afifplane is
strongly influenced by if1]. The ultimate goal of an aircraft high lift system design team is to define the simplest configuration
which, for prescribed constraints, will meet the takie climb, and landing requirements usually expressetkims of maximum

L/D and/or maximum € The ability of the calculation method to accurately predict changes in objective function value when gaps,
overlaps and element deflectione &aried is therefore criticaDespite advances in computer capacty, €normous computational

cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpogm of des
optimisation. To cut down the cost, surrogate models, also known as metamodels, are construaiedi themused in place of the
actual simulation models. This work outlines the development of integrated systems to pefodynamicsmulti-objective
optimisation for a threelement airfoil test case in high lift configurationaking use of surrogat@odelsavailable in MACROS
Generic Tools, which has been integrated in our design Rifferent metamodeling techniques have been compared based on
multiple performance criteria. With MACROS is possipkrformingeither optimisation of the model built with predefined training
sample (GSO) or lterative Surrogd@ased Optimization (SBO). In this first case the model is build independent from the
optimisation and then use it as a black box in the optimisation prdeethe second case is needed to provide the possibility to call
CFD code from the optimisation process, and there is no need to build any model, it is being built internally duringitadiopti
process. Both approaches have been apphedetailed analysis of the integrated design system, the methods as well as the
optimisation results of the comparison between the techniques is provided.
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3. Introduction
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time scale and reduced costs are the primary objectives and constraints, a different approach for the design prosesyg is feeces
introduced. Optimisation has become part of the design activity in many disciplines that are not only restricted tongngiheeri
motivation behind this inclusion is the need to produce economically relevant products or services with embedddhpraléy.
production and design tools, as well as advancements in computational process technology, have assisted towards tlmnconsidera
of optimisation methods in new developments and in different applications. In the industrial context, optinssatsomlly
associated with design and it meam#dentify the best solutions undegrtain circumstances

The basic knowledge to understand the aerodynamics ofliftiglevices is presented by A.M.O. Smitg] [in 1975. In his work
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airfoils. More recently higHift aerodynamics became a common research field for experim@itahd numerical studies. The
capabilities ohumerical methods concerning the aerodynamic performance cfifhiglvices are reviewed by Rumsey. [

Most current methods for transport aircraft high lift system design rely on use of wind tunnel testing in conjunction with
Computational Fluid Dynamsc(CFD) analysis. These approaches do not allow varying the positions of the various elements, such as
slats and flaps, in a systematic fashion.

Aircraft design, as many other engineering applications, is increasingly relying on computationalipdsest, a strong effort has

been done in the recent past to introduce potentially highly accurate analysis methods both in geometry and physicsThedelling
main drawback is that they are computationally expendifre. solution of no#linear steady or wsteady aerodynamic flows by
numerically solving the NavieBtokes equations implies an amount of data storage, data handling and processor costs that may result
very intensive, even when implemented on modern-staset computing platforms. This turnstdim be an even bigger issue when

used within parametric studies, automated search or optimisation loops which typically may require thousands analysisevaluat
Due to these obstacles, long running times and lack of analytic gradients, almost arngatiptinmethod applied directly to the
simulation will be slowThe techniques of optimisation in the recent years have not changed significantly but the areas in which they
are applied have increased at considerable [B®&7,8,9,10,11,12 Successful se of optimisation requires prerequisites as a
mathematical modelling of the design problem, knowledge of the computer software, and of the optimisation techniquecihe corr
implementation of such an analysis hence involves the utilisation of the ma@stcad numerical simulation methods in a wide
variety of disciplines. It is clear that from a technical point of view it represents a reallgnding task. In this workvill be

explored how to achieve design convergence acceleration and what consequences this might have to the optimality level of the
designed product, the airfdiigh-lift in our case.

An adequate and general answer to optimisation based on long running and complytattenalve analysis lies in the exploitation

of surrogate model©ver the last two decades, there has been an explosion in the ability of engineers to build numerical models to
simulate how a complex product will perform. Moreover, the ability to quickbdify these simulation models to reflect design
changes has also greatly increased and the potential for using optimisation techniques to improve engineering desighés now h
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than ever beforeSurrogate models are educated guesses as to what aeezimgj function might look like, based on a few points in
space wherd is possibleaffordingto measure the function values. Recent advances in SurBgseel Optimisation (SBO) bring

the promise of efficient global optimisation to realify3]. A review of the stat®f-the-art constructing surrogate models and their

use in optimisation strategies is to be foundréferences 14, 15, 16]. Surrogate models may be usefully exploited through
optimisation as they indeed try to provide answers in the getpgebn the necessarily limited analysis runs that can be afforded with

the available computing poweFhe basic idea is for the surrogate to act as a curve fit to the available data so that the results may be
predicted without recourse to the use of the primary source, the computationally intensive simulation codes. The abasedch is

on the assumptiothat, once built, the surrogate will be many orders of magnitude faster than the primary source while still being
usefully accurate when predicting away from known data points. This underlines the two key requirements of the approach: a
significant speednicrease in use and useful accuracy. Obviously these constitute two conflicting requirements and the compromise
best suited to the application targeted will drive the choices set.

4 High-Lift systems

The purpose of higlift devices comes from lovgpeed proedures as indicated in the FAR/2Sdocuments17, 1§. These involve
takeoff, landing and gearound manoeuvres. Flaig et fl9] explains that the unaltered, clean wing is based on optimum cruise
conditions, since the larger part of the flight corssit cruising towards the destination. The aircraft high lift system designer is
usually given a wing designed for cruise conditions. The maximum chord of the slat and/or flap(s) is usually dictatsizdwpthe
the wing box determined for structural afu@l capacity consideration¥herefore, very little leverage exists on the shape of these
elements but more on the spacing with respect to each other (gap and overlap).

A broad range of different higlift systems have been developed over the yeargyuaththe most widely used in civil aircraft is the
multi-element wing. This configuration is typically composed of a leaditge device that increases the stall angle of attack, and a
trailing-edge device that produces an upward shift in thedifte, €eFigure 1.
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Figure 1 Effects of leading edge (increase of stall angle of attack) and trailing edge devices (shift upward) on lift curve [1]
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The aerodynamics performance of a malément wing is strongly dependent on the interactions betwedtiftbient elements
Compared with a single element airfoil, additionally complexity can be identified irfldhefield that develops around such
configuration as illustrated irfrigure 2.

Figure 2 Visualisation of the flowfield for a multi elementving

In particular recirculation areas develop in the cove region of slat aimdetement, together with the mixing of the shear layers of
the different elementd8y changing the geometric spacing (slots) between the elements, the wakes of the congfmamdiary
layers can merge, leading to a "confluent boundary layer". This deteriorates the stall characteristics of the airfoik, therghp
size must be properly balanced.

The optimisation of multielement airfoils requirethe relative positiorof the different elements to be varied. Therefore, a set of
parameters have to be defined that uniquely defining the positioning of each eldi@meémis solutions have been proposed in
literature, although the most commonly used parametedin this work usedis WK H-RIWDEBUOD S Gsdd EiQuie/BL R Q°

The gapoverlap definition is related to the physical sensitivity of the flow to geometrical charfyes variables are used for the
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centred at the trailing edge of the preceding element and tangent to the followitigi®bg definition always positivahe overlap

is, as the name suggests, a measure of the elements overlapping, measured along the stowed configuration chord liag. isThe ove
defined by the chorehise distance between the trailing edge point efrttain element and the forwamibst point on the following

element. It is defined positive when the elements are overlapping, whereas a negative value indicates increased séparation of
elementsFinally the deflection angle is the angle between thancfgofile chord and the rotate chord fixed relative to the deployed
element (slat or flapHowever, a positve LV DVVRFLDWHG WR DQ LQFUHDVH LQ GHIOHFWLRQ DQJ
clockwise rotation for the flap element, and to arteaclockwise rotation for the slat.
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(a) Slat (b) Flap

Figure 3 Gapoverlap definition ér hightlift device deployments

The complexity of the underlying aerodynamics and the sensitivity of the airfoil performance to the value of gap anchakerlap
the determination of the optimum positions of the elements a challenging task.

5. Optimisation brief overview

The main aim ofan optimisation process is to find an optimal geometry that fulfilsnimémisation (or maximisation)of the

objective functions. Therefore, the first task to be performed is to define some variables, called design variablesrmstt®np

process, lowing the parameterisationf the geometryHence, the first task to be executed is the pararsatien of theinitial high-

lift geometry. A seconthsk is to define the design space where the optimisation is allowed to set the design variabldé thalues.

design space is too narrow, the ng@ometrygenerated may not be good enough to provide any advantage upon the datum profile.
Conversely, if the design space is too wide, the geometries generated could be unfeasible and problems will arise ttegarding o
steps of the optimisation process, for amste in the CFD meshing, ppeocessor and solver steps. In general, this step is one of the

key bottlenecks of the production of an integrated automated optimisation process due to the difficulties of buildimogastcaoid

flexible enough to provida wide variety of new geometries, allowing for minimal changes, with the minimum amount of design
variables.

The CFD solver represents the most computational and time demanding phase of the whole optimisation process. The level of
accuracy required for hCFD solution is such that the physics of the analysed problem must be captured, in order not to mislead the
optimisation process. However, it is not necessary to have a highly accurate solution if it comes at the cost of increased
computational effort, ither time or resources. In fact, the optimisation process wikumeessfuls long as the correct trend in
performance is identified.

The optimiser is the main module of the whole optimisation process and is crucial to the success or failure of pmdupiroved
design.The performance of the process also relies on the ability of the optimiser to manage these types of problems. Assessing an
RSWLPLVDWLRQ FDQQRW EH DSSURDFKHG ZLWKRXW WKH XVH RmBérRFRIBsS\gW HU LQW
variables and describe the problem, whilst evaluating the objective functions in order to improve them. In order fesshigas®

be feasible, it is necessary to use an algorithm capable of managing the design variables in amedfiniemtMany optimisers

have been developed throughout the years with the hope of finding a method able to solve any kind of problem. Thisassaofveakn

the optimiser, as none of them are able to do that task perfectly. The reason for this is éffatiehey of one optimisation

algorithm to solve a problem strongly depends on the nature of the problem itself. This is why algorithms are still gndently
development.

6. Methodology

The main goal of this work is to enable deployments settings isption for multielement airfoils at takeff and landing using
surrogate models to accelerate the process.

The workflow of the newly devefed automated and integrated surroggimisation approach is schematisedrigure 4.
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Figure4: Schematiavorkflow of theintegrated system to perforraction HLoptimisation usingurrogate models

First the baselinegeometryis importedin the tool, for which to facilitatehe data exchange with other design tools several file
formats can be read in as walh exportedMoreover, when considering mukiements airfoils, the geometry can be imported in

either the stowed or pideployed configuratioriThe next step ito setup the trade studyspecifying the flow conditions, i.e. Mach

number, angle of attack range and the RANS code settings. A set of design variables will be presented to the useraventowill h
choosean appropriate subset and define the range of vami&dr each variableéFinally the selection od methodfor generaing a set

of different deployment settings configuratideselected. In this particular work thatin Hypercube Sampling (LHS) as Design of
Experiment (DoE) algorithrhas been selectediven that this metid provides good uniformity and flexiity on the size of the

sample.A background process is then started, in whigése input files are then transferred to a High Parallel Computing (HPC)
clusterqueuing systemmand RANS simulations are performed fack design point, using TAU 2D (DLR RANS code), making use

of the SST turbulence model, after that the meshes are automatically generdt®fd KLQ WKH LQWHJIJUDWHG V\VWF
JHQHUDWLRQ ™ DSSURDFK LV XVHG PHDQLQ Jowfic &valDatiQrHat eldH ddsigh \Wedtii€phH U D W H G
addition, feasibility checks are carried out to exclude geometry intersections and low mesh quality from the pAtotiess
completion of all the converged simulations on the HPC cluster, data catribeed in the local machine and optimisation process

can be seup. In order toperformsingle andnulti-objective optimisatiodMACROS Generic Tool has been integratedur design

tool.

6.2MACROS_GT

MACROS GT is a is a highperformance C++ corplatform thatoffers a set of software tools for process integration, predictive
modelling, data mining and multidisciplinary optasaiion MACROS_GT is developed YATADVANCE, whichis a joint venture
company between Airbus Grogmd a group of privatevestors speciaded in the development of predictive modelliaugd multi
objective optimsation softwarelt is a powerful toolkit for predictive modelling, data analysis and optifiain. It provides statef-

the-art algorithms for optimisation, approxation, dimension reduction, design of experiments, and sensitivity analysis, including
both weltkknown and unique modern methodishasa Python interfaceasy to adopt in the existing engineering development
processMACRO allows to reduce design timadicost thanks to design optimisation technology based on the synergy between data
analysis and numerical optimisatioBeneric Tool for Optimisation (GTOpt), which is an essential part of MACROS predictive
modelling and optimisation toolbox is a softwgrackage for multi and singleobjective nonlinear optimisation. Optimisation
problems of this kind arise in almost all engineering and/or scientific applications. GTOpt implements variety of modmts, meth
however, most of the technical details is hidétem the end usetJsing MACROS is possible toerform either optimisation of the
model built with predefined training samplasing the GTApprox module which is a software package for construction of
approximationditting userprovidedtraining datg the so called Global Surrogate Optimisati@SO) or an Iterative Surrogate

Based Optimization (SBO)

The main difference is that inGSO,GT Approx constructs surrogate model that is expected to be as accurate as possible in all input
domain and minimizes average prediction error for the maohel, clearly the solution of optimisation problems using a prebuild
surrogate model, essentiallmends on the training sample. this casethe model is built independently from the optimisation
process, within our integrated design tool, #reh usd as a black box in the optimaigon process

Making use of the SBO approaishneeded to provide thgossibility to callthe sourceCFD code from the optimisation process, and



there is no need to build any model, it is being built internallyndj the optimisation process.

During an optimisation process there is no need to have good accuracy everywhere. It is needed best precision nearimgtimum po
to locate them and in other places it is necessary a model to be accurate enough just to indicate in which regionsethghoptami

dig for optimum (or in which regions it is not known the function behaviour). This logic is implemiented SBOby means of

special nested muitesolution surrogate model insiB®ACROS GT Opt and corresponding adaptive D(BEesign of Experimet)

process where new samples are sequentially inserted to improve the prediction accihastyated inFigure 5.

Method basics

‘ Produce initial sample {x;, f; (x) }x |

| Build GTApprox model f(x) (intemallyin GTOpt) I

Find the best point x* according to G'[Opt‘s intemnal criterion Cr(x,f. )P
n]\i.n Cr(x,f, ) - x*

Simplest case: min f'(x) - x‘.f'
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Figure5: Scheme of th&urrogate Based Optimization (SB@gthod

NoN+1
Rebuild the model f(x)

Select optimal point

The goal of criterion function is to find
x* = f(x*) < min;f}! Q)

Using only mirx (x) x* as criterion is not efficient, because it leads to localisation of the search procHurireriterion has to
account for model and error:

[F (0, 6(0)]! @)
GT Opt assumes Gaussian process behaviour so we can estimaté i@ipfoving
@ w I 3)
6(x)

Wheref*is the functior§ target value and is error function.
For more information is advisable to look at thATADVANCE technical referencelocumentatiorthat canbe found on their
welbsite[20].

7. Test Case
Thehigh lift airfoil under investigation ia section cut of a confidential three element wibg shown dimensionless Figure6.

Figure6: Airfoil geometry

The CFD analyses have been performed under the following flow conditior0.®] Re=6-10°for an entire polar in which the angle
of attack rangefrom 0 to 23 degre hybrid meshapproacthas beeselected for the automated meshing procedtig structured
in the near wall regionkeeping a y+ < 0.5 all over the surface from the first @ety from the wall, in order to have a good
resolution of the boundary layer and unstructured in the reaming parts of the dearttiermore, a quadominant mesh has been
preferred to a pure triangle unstructured drfe mesh is shown iRigure 7.



Figure 7: Mesh around the airfoil

It is made up of nearly 350000 cells, and the far-field boundary is a circle with a radius of 100 times the stowed single element chord.
A pressure far-field boundary condition has been applied to the external domain and a no-slip condition at the airfoil surface.

The optimisation aims at improving the aerodynamic performance of the configuration varying the deployment settings of the lift
devices. The gap, overlap and deflection angle of each element are used as design variables, adding up a total of 6 parameters. In
order to define the design space, i.e. the range of variability of the design variables, many different constraints should be considered.
One of the most important class of constraints is represented by kinematics used to deploy the high-lift devices. This aspect has an
important influence on limiting the relative positions of slat and flap in respect of the main element. Although, in the current study
these constraints are not taking into account, the design space is defined, for both slat and flap, keeping these limitations in mind. (see
Table 1).

Table 1: Design variables, their datum value and range of variation

Design Variables Minimum Value Datum Maximum Value
Slat gap 0.015 0.02 0.025
Slat overlap 0.005 0.01 0.015
Slat deflection 15.0 20.0 25.0
Flap gap 0.015 0.02 0.025
Flap overlap 0.025 0.05 0.075
Flap deflection 10.0 15.0 20.0

Specifically, an optimisation study has been conducted using the Global surrogate optimisation approach making use of different
surrogate model technique and varying the number of train sample to build the model and tested on variable number of design
parameters. For these optimisation studies two objective functions have considered. Specifically the lift over drag (L/D) and the max
lift coefficient (Cl,,,). Additionally, a Surrogate-Based single objective optimisation approach has been applied and compared the
results with only one of the GSO approach performed.

8. Overview of the approximation techniques
The principle features of the five metamodeling techniques compared in this study are described in the following sections.

8.1 Response Surface Model quadratic (RMSq)

It is a kind of linear regression model with several approaches to regression coefficients estimation. RSM can be either linear or
quadratic with respect to input variables. The quadratic RSM has been used in this study. It is a very robust and fast technique with a
wide applicability in terms of the space dimensions and amount of the training data.

8.2 High Dimensional Approximation (HDA)
It is an advanced algorithm of division of the training set into the proper training and validating parts. A non-linear, self-organizing
technique for construction of approximation using linear decomposition in functions from functional dictionary consisting of both
linear and non-linear base functions. Particular example of such decomposition is so-called two-layer perceptron with nonlinear
(sigmoid) activation  function. However, the structure and  algorithm of HDA is completely
different from that of two-layer perceptron and contains the following features:

X an advanced algorithm of division of the training set into the proper training and validating parts;

X different types of base functions, including sigmoid and Gaussian;

X adaptive selection of the type and number of base functions and approximation's complexity;

X an innovative algorithm of initialization of base functions' parameters;

X an adaptive regularization algorithm for controlling the generalization ability of the approximation;
In short the HDA algorithm works as follows:

1. The training set is devised into the proper training and validating parts.



2. Functional dictionary with different types of base functions, including sigmoid and Gaussian functions, is initialized.

3. The number, type of base functions from the functional dictionary and approximation's complexity are adaptively selected.
Thus a basic approximator is initialized.

4. The basic approximator is trained using an adaptive strategy controlling the type and parameters of used optimization
algorithms. Specially elaborated adaptive regularization is used to control the generalization ability of the basic
approximator.

5. Post-processing of the basic approximator's structure is done in order to remove redundant base functions.

For more details, see [21].

8.3 Gaussian Process (GP)
A flexible non-linear, non-parametric technique for constructing of approximation by modelling training data sample as a realization
of an infinite dimensional Gaussian Distribution fully defined by a mean function and a covariance function [22, 23]. Approximation
is based on a posteriori mean (for the given training data) of the considered Gaussian Process with a priori selected covariance
function. GP contains the following features:
flexible functional class for modelling covariance function;

X  an innovative algorithm of initialization of parameters of the covariance function;

X an adaptive strategy controlling the parameters of used optimization algorithm;

X an adaptive regularization algorithm for controlling the generalization ability of the approximation;

X Post-processing of the results to remove redundant features in the approximation.
In short the GP algorithm works as follows:

1. Parameters of the covariance function are initialized;

2. Covariance model of the data generation process is identified by maximizing likelihood of the training data.

3. Post-processing of approximator's structure is done.
See [24] for details.

8.4 High Dimensional Approximation combined with Gaussian Processes (HDAGP)

It is a flexible non-linear approximation technique, with a wide applicability in terms of space dimensions. HDAGP extends the
ability of GP to deal with spatially inhomogeneous functions, functions with discontinuities. However, HDAGP approximation is the
slowest method compared to HDA method and GP method.

8.5 Mixture of Approximations (MoA)

Because, any approximation algorithm has natural restrictions on training sample size due to limited computational resources

Suppose training sample size is huge and there is no enough memory to handle it. Possible solution is to use sub-sample. However,

this solution is bad because it does not use all given information. A better solution is to decompose the design space into sub-regions,

extract from the initial sample the corresponding sub-samples, for each sub-VDPSOH FRQVWUXFW ORFDO DSSURJ[LP
these approximations together into one Surrogate Model, as shown in Figure 8 This is the idea behind this method, which is to

decompose the design space into sub-domains and construct in each of them valid approximation. It could be useful for discontinuous

function.

TrueFunction MoA

o 0.5
2.0 0.0

2.0 o0

Figure 8: Example of surrogate model built with the MoA technique

9. Performance Metrics

There are various commonly used performance metrics for approximation models that are given in Ref. [25]. In the engineering
design, the cross-validation method is currently a popular method for model validation Cross-validation is actually a measurement for
degrees of insensitivity of a metamodel to lost information at its data points. Cross-validation is a well-known and well-established
way of statistical assessment of the algorithm's efficiency on the given training set, but it should be stressed, however, that it does not
directly estimate the predictive power of the main approximation Boutside the training set S. Rather, the purpose of cross-validation
is to assess the efficiency of the approximation algorithm on various subsets of the available data, assuming that the conclusions can
be extended to the (unavailable) observations from the total design space.

Suppose that a training set (Xy ; Yy) represents an unknown response function Y = f(X), and Bis an approximation of f constructed
from this training data. An important property of the approximation is its predictive power Q? which is understood as the agreement
between f and Bon points X not belonging to the training set (X ; Y)). Q% is a statistical measure of how close the data are to the
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A closely related concept is accuracy of #pproximation, whichis undestood as the deviatiodB F B+on the design space of
interest.Accuracy is often measuredatistically, e.g., standard accuracy measures arbéa@ Absolute Error (MAE) and root
meansquared error (RMS)'he MAE here is the mean of the hatfrmal distribution (i.e., the average of the positive subset of a
population of normally disibuted errors with zero meanyyhich provides an understanding of the maximum local deviatiadhe
model estimation from the actual output.
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The RMSE is a quadratic scorimgle, whichmeasures thaverage magnitude of the errovhich is a global error measure and
provides arunderstanding of the model accuracy over the entire design domain
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10.Results

Severaloptimisation problems on same test case have been performed varying the number of design variables and training set size
(100, 250, 500) for model constructiomaking use of fivedifferent techniques, but due pageconstraint the results of @SO
multi-objectiveoptimisation problem using 6 DVsitlr surrogate trained with 25@sign pointsnaking use oHDAGP, which isthe

one that predicted best results has shdvigure9 shows the model accuracy comparison in terms of MAE and RANGEF
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Figure 9:Model accuracy comparison

Figure 10shows a scatter pldor the built HDAGP surrogatebtained using the validaticset In this caseredictions are close to
the true values, siheobtained model seems to be accurate enough.

Scatter plot for Clmax Scatter plot for LoverD

Figure 10:Scatter plad obtained with a separate test sample

Theresult of the optimisation in term of Pareto fronsli®wn in Figure 11



Figure 11: Pareto front
The Pareto front obtained has shown a substantial improvement of the objective functiorladlie@sshow the validation of some
points belonging to the Pareto front agai@ftD analysis and it possible to see that the resrktsgenerally in good agreement,
although the optimisation results using the surrogate slightly over predict both the objective functions.

Table2: Design variables, their datum value and rangeaagtion

Design Variables L/D (SM) L/D (CFD) Cl (SM) Cl (CFD)
Datum 58.5516 57.4378 3.3366 3.3375
Max ClI 62.8399 61.9875 3.6798 3.6548

Compromise 67.7175 65.9148 3.5339 3.5287
Max L/D 70.4384 68.8793 3.3439 3.3245
Maximum ClI 55.7703 54.8762 3.6717 3.6571

During this exercisewhen using 100 or 500 design points to train the surrogate no better results have been found. In the first case is
most probably due to the fact that they are not sufficient for the generation of an enough accurate model due-lingastyar

the physics behind. In the second case as opposite the detrimental of results is due to of an overfitting or overtraining phenomenon
which consist in getting the approximation to be very accurate on the training set, at the cost of excessively increasing
approXiPDWLRQTV FRPSOH[LW\ ZKLFK OHDGV WR D OHVV UREXVW EHKDYLRXU DQG >
training set, especially when we are dealing with noisy data.

A comparison between the two different optimisation approadB8© vs. 80 has been performedn this case just 4DVs are
considered and a single objectiaéen into accountStarting with a model built on 90 points 15 new points have been automatically
generated to improve the Surrogdteoking at the design spacseeFigure 2, is clear that these points are addn a particular
subregion where the optimum is probably to be and clearly looking at the LoverD results there is an improvement of the Objective
function

s _pip

e slat_gap slat_def flap_gap flap_def LoverD

« + ' Datum 0.02 20 0.02 15 58.5516 .

) GSOpt 0.0150 15.0013 0.01570 10.0011 67.8793 Y.
_+ %, sBopt 0.0150 17.5575 0.01636 100000  Go8iea - *

T i ¥

. ve o . +
v . . 3 .
ot . o et
. . .

Figure 2: Comparisorbetween the two different optimisation approaches, GSO vs. SBO

11.Conclusion

An integrated optimisation approaches have been developed and has demonstbatesbamless and robust. Therrogate
optimisation architecture is preferred to a RAMSheloop one.Firstly, the optimisation process is-deupled from the RANS
execution, reducing the risk of failure during the procAsshe same time theurrogate optimisation approach presents also some
drawbacks. The model is not guaranteed to be accurate over the whole design space, especially if the problem tackledris highl
linear. Besides, the number of samples required for constructing antacsumagate model increases rapidly with the number of
design variable<learly, the choice of the optimisation architecture has a significant influence on both the solution time and the final
design.As for the different approximation techniques:



RMS is usually rather crude, and the approximation can hardly be significantly improved by adding new training data. In addition,
the number of regression terms can increase rapidly with increasing of dimension, if quadratic RSM is used. An adv&ithige of R
that it can smooth out the various scales of numerical noise in the data while captures the global trend of the variation.

HDA is a flexible nodinear approximation technique, with a wide applicability in terms of space dimensions. HDA can be used
with large training sets (more than 1000 points). However, HDA is notauékd for the case of very small sample siSgnificant

training time is often necessary to obtain accurate approximation for large training saibflesan be applied to noisy data.

GP usually demonstrates accurate behaviour in the case of small and medium sample sizes. GP isuitgdwiell modelling
spatially inhomogeneous functions, functions with discontinuities. GP is a resotawsive method in terms of ram capacity,
therefore large samples are not supported, although large dimension are supported.

HDAGP is a resourcéntensive method in terms of ram capacity; therefore large samples are not supported. It typically provides less
smooth approximatigrbut it has given thbest results for almost all cases investigated.

MoA has not proved its benefits, bitis due to thenatureof the objective functions considered that are not so much discontinuous.
Models from GT Approx and internal models from GT Opt solve different pradl That is why it is advisable to use GTOpt SBO
optimisation with direct calling of CFD code for optimisation purpose, and surrogate model constructed with GT Approx to study
function behaviour or make predictions over all input domain.

To conclude, awmated design process is very attractive for commercial aircraft industry as it greatly reduces the development
period, and the optimisation approach described could be used ascadpvoworder approximation for aerodynamic shape
optimisation in an idustrial context, given its ability to produce good results in a limited amount of time.
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