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Multiobjective optimization

Problem Definition

We consider multi-objective optimization problem

min
x

f i (x) K > 1 objective functions

c j
L ≤ c j (x) ≤ c j

U M generic constraints

xk
L ≤ xk ≤ xk

U N box bounds
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Multiobjective optimization

Pareto frontier

Ω = {x | cL ≤ c(x) ≤ cU} Admissible set
Y = f (Ω) Feasible set

S =
{

x |
{

x̃ ∈ Ω | f (x̃) ≤ f (x), f (x̃) 6= f (x)
}

= ∅
}

Pareto set
P = f (S) Pareto frontier

Y ∗ = P + RK
+ = Y + RK

+ Edgeworth-Pareto hull

x2

x1

design space

Ω

S
Pareto set

f2

f1

objective space

Pareto frontier

P

Y ∗
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Multiobjective optimization

Two stage of approach

• Local: Find a single non-dominated solution
(nearest to the initial guess in some sense).

• Global: Find a whole variety of non-dominated points

f2
initial point

optimal solution f1

f2
initial point

set of
f1optimal solutions
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Multiobjective descent
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Multiobjective descent

Finding one Pareto point

Purposes:
• Universal estimation of optimality of current iterate xk

(suitable for single- and multi-objective problems,
with or without constraints)

• Obtain the direction of optimal descent

(direct analog of steepest descent in K = 1, M = 0 case)
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Multiobjective descent

Gradients in multiobjective case
x2

x1

−g2

−g1

(a) Far from solution

x2

x1

−g2

−g1

(b) Close to solution

−g2

−g1

x2

x1

(c) Solution

It follows from Karush - Kuhn - Tucker conditions that zero vector in
optimal point can be represented as linear combination of gradients

of objective components with positive coefficients.
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Multiobjective descent

Multiobjective descent

Mathematically, we would like to find (or ensure the absence of) a
direction d 6= 0 such that:

• d is a descent direction for all objectives:

d · ∇ f i ≤ 0 ∀i

• d violates none of imposed bounds in linear approximation

c j
L ≤ c j + d · ∇ c j ≤ c j

U ∀j
xk

L ≤ xk + d ≤ xk
U ∀k

Solution of the problem give us multiobjective steepest descent.
Based on original work J. Fliege, B. F. Svaiter Steepest Descent Methods for Multicriteria Optimization Mathematical Methods of Operations

Research, 2000
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Multiobjective descent

Multiobjective (quasi-)Newton descent

Problems with optimal descent:
• Slow convergence if used in iterative line-search based

algorithms
• Badly scaled search direction (no prediction on optimal step size)

Remedy is to include Hessians information.

Basic equations for M = 0:

min
d

max
i

[d · ∇ f i + 1/2 dH id ] ⇔
min
d,t

t

d · ∇ f i + 1/2 dH id ≤ t

• Problem type is QCQP
• Hard to solve, but internal and hence cheap by definition
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Multiobjective descent

... with constraints

True formulation in case of constrained problems:

min
d,t

t

d · ∇ f i + 1/2 dH id ≤ t

± [d · ∇ c j + 1/2 dH j
cd ] ≤ t j ∈ A

k ∈ Ab : dk ∈

{
≥ 0 xk is lower-active
≤ 0 xk is upper-active
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Multiobjective descent

Summary on multiobjective (quasi-)Newton descent

• Allows finding Pareto optimal points
• Has good speed of convergence
• Is suitable for non-convex fronts
• Is locally find nearest Pareto point
• Inherits the smoothness of underline problem
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Discovering whole frontier
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Discovering whole frontier

Finding Pareto frontier

f2

f1

Anchor f 1
a

Anchor f 1
a

Nadir f max

Ideal f min
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Discovering whole frontier

Local geometry of Pareto set

For simplicity let’s consider optimal descent in M = 0 case.

d · ∇ f i ≤ 0 ∀i

In Pareto optimal point

rank(∇f i ) ≤ K − 1

and generically rank(∇f i ) = K − 1 (“front dimensionality is K − 1”)
Moreover, there are λi ≥ 0,

∑
λ = 1 such∑

i

λi∇f i = 0.

And the
Lin(∇f i )

is tangent hyperspace in the design space.
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Discovering whole frontier

Tangent direction

f

x0

1

f0

x1

t
γ

λ
γ

From the above, it follows that there are
the set of vectors

tγ , γ = 1, ...,K − 1,

that forms orthonormal basis in
Pareto set tangent plane

(Pareto front tangents λ(γ) could be also
identified)
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Discovering whole frontier

Constrained case

Let PA be an orthogonal projector onto the space tangent to active
constraints (including box constraints):

P2
A = PA, PA∇ci = 0, ∀i ∈ A

E.g.
PA = I − JT (JJT )J, J = (∇ci )

Then analysis of Pareto front local geometry goes through with the
only change

∇f → PA∇f
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Discovering whole frontier

Diffusion along Pareto Frontier

f

x0

1

f0

x1

t
γx

x

f

f

*

* For infinitesimal shift in Pareto set
tangent plane

x = x∗ + ε tγ

sub-optimality of x is of order O(ε).

It remains to push x back to optimality
which is rather cheap

(we’re still in the small vicinity of optimal
set!)
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Discovering whole frontier

First example
Ten-dimensional (N = 10) three-objective problem

FDS =


f1 = 1

N2

∑
i i (xi − i)4

f2 = exp{
∑

i xi/N}+ |x |2

f3 = 1
N(N+1)

∑
i i (N − i + 1) e−xi

subject to |x |2 = 1
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Problem from J. Fliege, L. M. Grana Drummond, B. F. Svaiter Newton’s Method for Multiobjective Optimization SIAM J. Optim, 2007
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Second Order Approximation
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Second Order Approximation

Second example

Four-dimensional (N = 4) two-objective problem

min

x1 +
2
|J1|

∑
j∈J1

hj (x), 1− x2
1 +

2
|J2|

∑
j∈J2

hj (x)


where

hj (x) = xj − sin
(

6πx1 +
jπ
N

)
J1 = {j | is odd and 2 ≤ j ≤ N}
J2 = {j | is even and 2 ≤ j ≤ N}

Problem is based on Q. Zhang, A. Zhou, S. Zhao†, P. N. Suganthan, W. Liu, S. Tiwari Multiobjective optimization Test Instances for the

CEC 2009 Special Session and Competition
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Second Order Approximation

Analytical solution
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Second Order Approximation

Diffusion solution

Singularity of Hessians make first order approximation inefficient.
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Second Order Approximation

Idea of second order correction

As before in optimal point we have∑
k

λk∇f k = 0,
∑

λk = 1, λ ≥ 0

That grants optimality for small step vε with the first order.

To move but to keep optimality with the second order:∑
k

λ̃k
(
Hk vε +∇f k) = 0,

∑
λ̃k = 1, λ̃ ≥ 0
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Second Order Approximation

Second order correction

Assuming infinitesimal step vε

λ̃k = λk + µk , µk = O(vε)

That leads idea to the structure of the second order correction

vε =

(∑
k

λk Hi

)−1∑
k

µk∇f k

And finally the correction that we use is

tc
γ =

(∑
k

λk Hi

)−1

tγ
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Second Order Approximation

Applying second order correction
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Second Order Approximation

Conclusion

Presented approach
• Allows discovering Pareto front;
• Finds exact points on Pareto front uniformally;
• Avoids multiple evaluations far from Pareto front;
• Can be used in the constrained case;
• Was successfully implemented in module GT Opt in pSeven;
• Was test and found efficient for large variety of MO problems;
• With additional second order correction it works even for

functions with singular Hessians behavior.
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Second Order Approximation

Thanks for your attention!

Alexis Pospelov (alexis.pospelov@datadvance.net)

DATADVANCE (datadvance.net)

pSeven (http://datadvance.net/product/pSeven)
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